Даташит на диод пиранья. Светодиоды «Пиранья» Примеры использования


Светодиоды «Пиранья» представляют собой низкопрофильную конструкцию с установленным светодиодом. Благодаря особенности конструкции светодиод «Пиранья» обеспечивает высокий световой поток, низкое тепловое сопротивление, а также низкое энергопотребление.


Низкопрофильная конструкция корпуса светодиодов «Пиранья» позволяет добиться более интенсивной и равномерной освещенности по сравнению со стандартными светодиодами. Кроме того, светодиоды устойчивы к встряскам. Четырех выводная система светодиодов «Пиранья» выглядит солидно. И в любой ситуации, вплоть до аварии или столкновении, они не отпадут от печатной платы.


Сфера применения светодиодов практически не ограничена. Рассмотрим несколько наиболее популярных вариантов использования светодиода «Пиранья»

Наиболее часто светодиоды «Пиранья» используются автолюбителями для замены штатного освещения на своих автомобилях. Равномерное свечение светодиодов идеально подходит для установки в центральный плафон салона

В задний стоп-сигнал,

Для использования в качестве подсветки номера

А также для использования в качестве в качестве декоративной подсветки логотипа

Кроме того, светодиоды «Пиранья» находят применение в электронных табло

Подсветке объемных букв и других объемных объектов.

Особенности низкого профиля позволяют использовать эти светодиоды с линзами и отражателями.

Главное отличие светодиодов Пиранья от светодиодов SMD

Светодиоды Пиранья – что такое? И почему такое необычное «хищное» название получили светоизлучающие кристаллы.

Конечно же, они не имеют ничего общего с южно-американской рыбой, кроме некоторого внешнего сходства.

Ассоциация с рыбой возникает из-за четырех выводов-«зубов», выходящих из корпуса вниз. На выводах имеются ограничители высоты установки корпуса над платой, из-за которых они похожи на зазубрины на зубах пираньи.

Корпус светодиодов типа «пиранья», в международном обозначении Piranha – это прозрачный прямоугольный в плане элемент, внутри которого расположен светоизлучающий кристалл, накрытый сверху линзой.

Главное отличие от SMD-светодиодов в том, что SMD-светодиоды – это безвыводные корпуса, которые приклеиваются к поверхности печатной платы, после чего подключаются к контактным площадкам этой платы пайкой. Светодиод SMD – это светоизлучающий кристалл, помещенный в керамический корпус, на боковых гранях которого методом вжигания металла в поверхность керамики выполнены контактные площадки. Кристалл приклеивается или припаивается на поверхность подложки и от контактных площадок на корпусе до полупроводниковых структур кристалла идут алюминиевые или золотые проволочные выводы. Они привариваются к кристаллу.

Некоторые характеристики светодиодов Пиранья

Корпуса светодиодов «пиранья» изготавливаются из прозрачного компаунда на основе эпоксидных полимеров. Они имеют вертикальные металлические выводы, которые вводятся в отверстия печатных плат и припаиваются к контактным площадкам с одной или с обеих сторон платы. Эти корпуса, например, в компании CREE обозначаются как Р4 и носят название Пиранья или Piranha.

Рассмотрим основные характеристики светодиодов Пиранья .

Светодиоды Пиранья по классификации компании CREE относятся к группе сверхъярких. Рабочий ток этих светодиодов в пределах десятков миллиампер (30, 50, 70 мА).

Сверхяркие светодиоды Пиранья имеют квадратный корпус, из которого вниз выходят четыре вывода. Размеры корпуса 7,6 х 7,6 мм, в его верхней части расположена выпуклая линза. Корпуса имеют три варианта исполнения:

  • Р41 – линза круглая, углы рассеяния света – 40, 70 и 100 град. для синих, янтарных, зеленых светодиодов, для белых – 60 и 90 град, световой поток, Лм – от 4,4 до 13,2;
  • Р42 – углы 120 град. цвет – красный, зеленый, синий и янтарный, световой поток – от 11 (синий) до13,2 (янтарный);
  • Р43 – угол – 40/35, поток – 2,13 – 8,2.

Достоинства светодиодов Пиранья

Достоинств у этих светоизлучающих кристаллов множество. Важнейшие из них:

  1. Большое количество тепла, отводимого от кристалла, обеспечивается металлическими вертикальными выводами, которые впаиваются в печатную плату, и позволяет эффективно отводить тепло, в том числе через печатные проводники.
  2. Стойкость к вибрациям и ударам – обеспечена малой массой элементов конструкции и их приклеиванием и сваркой.
  3. Плоская и/или выпуклая линзы обеспечивают большой выбор углов рассеивания света.
  4. При массовом производстве монтаж на плату поддается автоматизации.
  5. Возможна установка корпуса над платой с небольшим зазором, который позволяет дополнительно отводить тепло.

Светодиоды «Пиранья» выпускает и наш постоянный партнер – компания Arlight . Познакомиться с ними можно .

Светодиод представляет собой полупроводниковый кристалл в корпусе или без него с двумя выводами (проволочными или контактными площадками), которые являются контактами питания.

Он проводит электрический ток только в направлении от анода к катоду, при этом на анод подают положительное напряжение, а на катод – отрицательное.
Световой диод нельзя подключать к источнику питания непосредственно, т.к. он выйдет из строя, произойдет электрический пробой (сгорит). Для правильного включения в электрическую цепь ему нужен ограничитель, что и делают, устанавливая последовательно со светодиодом резистор. Такой резистор называется ограничительным. Кроме резистора, может устанавливаться интегральная или использоваться AC/DC-преобразователи.

При огромной разновидности типов светодиодов, все они имеют параметры, по которым они различаются, а это существенно влияет на способ их питания.

Основные параметры, на которые следует обращать внимание это:

  • сила тока (ток прямой номинальный);
  • падение напряжения (напряжение между катодом и анодом при прохождении номинального прямого тока).

Чтобы осуществить подключение светодиодов, какмаломощных, так и сверхмощных,необходим источник питания, который выдает напряжение не меньше, чем падение напряжения. Это аксиома. На упаковке со световыми диодами имеется его характеристика - , которая указывает величину падения напряжения.

Способы подключения

Как подключить светодиод или несколько светодиодов? Как правильно соединить их в схему или ? Как просто присоединить светодиоды к колонке или к звуковой карте компьютера, да и еще так, чтобы они мигали в такт музыке?

Для этого рассмотрим особенности подключения различных светодиодов.

Из практики известно, что при подключении к разным напряжениям питания одного светового диода необходимы ограничительные резисторы на следующее электрическое сопротивление:

  • от 3 до 5 В – 100 Ом;
  • от 5 до 9 В – 220 Ом;
  • от 9 до 15 В – 470 Ом;
  • от 15 до 28 В – 2 кОм;
  • 220 В – 150 кОм.

Использовав следующую формулу:

где: R – сопротивление резистора (Ом);

U – напряжение питания (В);

dU – падение напряжения (В);

I – номинальный ток светодиода (А).

Последовательное подключение светодиодов вносит в эту формулу следующие изменения – вставляется вместо одного падения напряжения сумма падений напряжения всех световых диодов, имеющихся в схеме, при этом они должны иметь одинаковый номинальный ток, но номинальное падение напряжения может быть разным.

Мощность резистора

Необходимая мощность резистора подсчитывается по формуле:

где: Р – мощность резистора (Вт);

U пит. – напряжение источника питания (В);

U пад. – прямое падение напряжения на светодиоде (В);

R – сопротивление резистора (Ом).

Параллельное подключение требует знания всего лишь одного правила – нельзя соединять светодиоды на один резистор. К каждому световому диоду необходимо подключать свой резистор. Расчеты ведутся точно так же, как и для одиночного включения.

Подключение светодиодов большой мощности

Разрабатывались специально для осуществления освещения и подсветки и имеют мощность от 1 до 5 и более Вт. Основной характеристикой таких светодиодов является световой поток, который измеряется в люменах. Их отличительная черта – в процессе работы значительно нагреваются. Именно поэтому они чаще всего устанавливаются на радиатор или включаются через токовый драйвер. Для этого, в зависимости от мощности и места установки, используются драйверы:

  • LEDDRV5 - для световых диодов 1Вт (0,35А);
  • LEDDRV13 для световых диодов 3Вт и 5Вт.

К драйверу возможно подключение от 1 до 5 светодиодов, причем все они будут питаться одинаковым током.

Хорошим вариантом является использование AC/DC-преобразователей, имеющих стабилизированный ток. Это позволяет отказаться от установки внешних компонентов, таких как резистор или драйвер. Кроме того, это упрощает подключение мощных световых диодов, делает удобной эксплуатацию и снижает стоимость системы.

Сверхяркие светодиоды «Пиранья»

Светодиоды Пиранья состоит из 3-х диодов, расположенных в пластиковом корпусе, прямоугольной формы, который залит компаундом. Является аналогом светильника и светодиодной лампы. Широко применяется в оптоэлектронной промышленности. Выпускается 5 цветов.

Преимущества пираньи:

  • повышенная сила свечения (до 18 люменов);
  • низкое энергопотребление;
  • маркировка провода, упрощающая монтаж;
  • вибро- и удароустойчивость;
  • повышенный срок эксплуатации.

Подключается светодиод пиранья к источнику питания так же, как и мощные световые диоды. Характеристика указывается на упаковке.

RGB светодиоды

Относятся к источникам декоративного света и применяются в сувенирной продукции и для подсветки. В одном светодиоде RGB размещаются кристаллы синего, зеленого и красного цвета, что позволяет синтезировать любой оттенок. Производителями выпускаются белые и матричные RGB светодиоды. Монтаж прост – Подключение светодиодов ргб к источнику питания, который в свою очередь питается от сети 220 В. Управление цветом осуществляется с помощью специального устройства, называемого контроллером.

Описание

Универсальный модуль светодиода. Подойдет для проектов, где необходимо добавить цветную индикацию, не прибегая к пайке обычных светодиодов. Модуль подключается посредством трехпроводного шлейфа. Для удобства соединения рекомендуем использовать Sensor Shield. В отличии от обычного светодиода - светодиоды «пиранья» светят намного ярче. Очень удобно использовать для проектов подсветки, гирлянд, светомузыки, дополнительного освещения.

Встроенный транзистор позволяет использовать модуль в цепях с напряжением 3,3 В и 5 В. Поддерживается управление яркостью с помощью ШИМ.

Внимание! Будьте осторожны при работе с яркими светодиодами! Не смотрите на светодиод с близкого расстояния!

Технические характеристики

    Рабочее напряжение: 3,3 - 5 В

    Максимальный потребляемый ток (для белого или синего): 8,5 мА

    Максимальный потребляемый ток (для красного, жёлтого, зелёного): 10 мА

Физические размеры

    Габаритные размеры модуля Д х Ш х В: 30 х 20 х 7 мм

Плюсы использования

    Несколько цветов светодиодов для различных проектов (красный, жёлтый, зелёный, синий, белый)

    Лёгкое подключение к Sensor shield

    Не требует дополнительных радиодеталей (всё включено в модуль)

    Не требует пайки

    Прост в работе

    Управление яркостью светодиода с помощью ШИМ

    Очень яркое свечение

Минусы использования

    Дороже чем обычный светодиод

Примеры подключения и использования

Пример 1

В примере демонстрируется самая простая задача по работе со светодиодом - включение и отключение на 1 секунду.

Схема подключения:

Скетч для загрузки:

int LED = 9 ; } void loop() { digitalWrite (LED, HIGH ) ; // включение светодиода delay (1000 ) ; // задержка на 1 секунду // выключение светодиода delay (1000 ) ; // задержка на 1 секунду }

Пример 2. Управление с клавиатуры

Данный пример демонстрирует изменение времени включенного и выключенного состояния в зависимости от введенного значения с клавиатуры. По умолчанию значение времени установлено в 1 секунду (1000 миллисекунд). После загрузки скетча на контроллер, необходимо открыть монитор сериал порта, куда требуется ввести цифровое значение нового времени работы светодиода в миллисекундах отличное от нуля. Светодиод начинает мигать с частотой нового введённого времени.

Пример протестирован на контроллере Smart UNO.

Схема подключения:

Скетч для загрузки:

int LED = 9 ; //объявление пина подключения модуля int M_S = 1000 ; //переменная для хранения времени задержки void setup() { pinMode (LED, OUTPUT ) ; // установка пина как выходной Serial .begin (9600 ) ; } void loop() { if (Serial .available () > 0 ) { if (val != 0 ) { M_S = val; //записать его в переменную хранения времени } } digitalWrite (LED, HIGH ) ; // включение светодиода delay (M_S) ; // задержка на 1 секунду digitalWrite (LED, LOW ) ; // выключение светодиода delay (M_S) ; // задержка на 1 секунду }

Пример 3. Управление с помощью ШИМ

Данный пример демонстрирует изменение яркости свечения светодиода. Светодиод из выключенного состояния постепенно зажигается ярче, а затем постепенно затухает. Далее всё повторяется.

Пример протестирован на контроллере Smart UNO.

Схема подключения:

Скетч для загрузки:

int LED = 9 ; //объявление пина подключения модуля void setup() { pinMode (LED, OUTPUT ) ; // установка пина как выходной } void loop() { //первый цикл увеличивает яркость for (int i = 0 ; i < 1024 ; i++ ) { //цикл от 0 до 1024 analogWrite (LED, i) ; delay (100 ) ; //задержка в 100 миллисекунд } //второй цикл уменьшает яркость for (int i = 1024 ; i >= 0 ; i-- ) { analogWrite (LED, i) ; //записать значение яркости на порт светодиода delay (100 ) ; //задержка в 100 миллисекунд } }

Пример 4. Управление с помощью ШИМ (значение вводится с клавиатуры)

Данный пример демонстрирует изменение яркости свечения светодиода. Светодиод мигает с периодичностью 100 миллисекунд. По умолчанию яркость светодиода задана в 500 единиц (половина возможной яркости). После загрузки скетча в контроллер, открыв монитор Serial порта, можно ввести требуемую яркость. Однако, значение яркости будет программно ограничено между значениями 0 и 1023 (минимальное и максимальное значения).

Пример протестирован на контроллере Smart UNO.

Схема подключения:

Скетч для загрузки:

int LED = 9 ; //объявление пина подключения модуля int BRIGHTNESS = 500 ; //переменная для хранения яркости void setup() { pinMode (LED, OUTPUT ) ; // установка пина как выходной Serial .begin (9600 ) ; // инициализация Serial-порта } void loop() { if (Serial .available () > 0 ) { //если что-то пришло из сериал порта int val = Serial .parseInt () ; //считать значение в переменную if (val != 0 ) { // если считанное значение отлично от 0 BRIGHTNESS = constrain (val, 0 , 1023 ) ; //записать его в переменную яркости, ограничив значение } } analogWrite (LED, BRIGHTNESS) ; // включение светодиода с заданной яркостью delay (1000 ) ; // задержка на 1 секунду digitalWrite (LED, LOW ) ; // выключение светодиода delay (1000 ) ; // задержка на 1 секунду }

В наших предыдущих статьях мы много раз описывали процесс изготовления платы для установки в автомобиль различных светодиодных модулей. Использование метода ЛУТ дает очень широкие возможности для реализации самых смелых идей. Однако в последнее время все чаще наши клиенты задают вопрос о том, как сделать по этой технологии плату, которая была бы больше размером, чем стандартный лист А4. Дело в том, что у абсолютного большинства имеется принтер, который способен печатать только в формате А 4 и, следовательно, более крупные платы изготовить по методу ЛУТ не представляется возможным. В этой статье мы постараемся подробно описать, как с помощью. Метода ЛУТ делать составные платы на примере «светодиодных ресничек».

Светодиодный модуль, который необходимо создать имеет длину 43 см. А так как в наличии имеется принтер и сканер формата А4 (длина А4 составляет 29,7 см, если что), то плату необходимо делать составную.

Для начала нарисуем плату и распечатаем ее на 2 разных листах А4. Важно делать плату немного с запасом, чтобы впоследствии удалить лишнее. По методу ЛУТ переносим изображение на тектолит.

Наносим на платы метки соединения, чтобы проще было монтировать цельную плату. Теперь платы готовы к травлению.
Вырезаем лишний текстолит и переходим к травлению.

Аккуратно отрезаем лишнее по линии разреза. Край должны быть максимально плоскими, чтобы обе платы соединились и выглядели как единое целое.

Удаляем все лишнее и приступаем к припаиванию светодиодов и резисторов.

С обратной стороны платы спаиваем сами платы между собой.

Плата готова.

Теперь ее легко можно использовать в качестве светодиодных ресничек. Достаточно подобрать рассеиватель и можно устанавливать модуль в автомобиль.







2024 © sdelano-krasnodar.ru.