Современный осциллограф на микроконтроллере схема. Карманный осциллограф на микроконтроллере


У каждого в жизни был момент, когда понимаешь, « Надо покупать осциллограф! » . В моей практике,в большинстве случаев осциллограф нужен был для наблюдения за формой сигнала (или вообще показывал его наличие), тогда как основные измерения и исследования проводились на других приборах. Многие сейчас со мной поспорят, ну что поделаешь мне так удобней.Поэтому я решил сделать простой осциллограф-пробник. Он не будет отличаться хорошими характеристиками, главная цель, как можно популярней объяснить принцип работы! В конце статьи можно найти архив со всеми исходниками и материалами, которые потребуются. Итак начнем...

Цифровой сигнал - это массив чисел(если сразу по простому), каждое число это значение напряжения в данное время. Отсчеты делаются с определенной частотой, что и называется частотой дискретизации. Переводом из аналогового сигнала в дискретный и занимается АЦП. Существуют специальные микросхемы реализующие данную функцию, но микроконтроллеры специально снабжаются выводами с которых можно снимать значения. Откроем datasheet на Atmega8, там видим фразу: 8 каналов(или 6 для корпуса PDIP) 10-бит АЦП. Т.е. можно подвести 8 сигналов к каждому из этих каналов, и снимать с каждого свой сигнал! 10-бит же означает, что в каждый момент времени напряжение кодируется 2-чным числом из 10 цифр. Запомните этот факт.

Теперь, наш АЦП не понимает отрицательного напряжения, он производит измерения от 0-GND до AREF. Верхний порог может быть задан в регистре ADMUX как внутренний источник = 2,56 В или же может быть равен напряжению на ножке AVCC(что обычно и делается). Так же в ADLAR(смотри рисунок ниже) можно задавать порядок заполнения результата.

Адрес MUX 0x0000 соответствует входу ADC0, и по аналогии продолжается (если не поняли смотрите в даташите стр 199).

Теперь, запуск АЦП. АЦП может работать в 2 режимах. Первый - однократный режим (Single Conversation), в данном режиме мы подаем команду "Измерить!" он измеряет и выключается (но это так образно). Второй - постоянный запуск (Free Running), где мы настраиваем все, включаем и он работает а мы постоянно снимаем значения. Для реализации нашей задачи больше подходит второй режим, но так сложней контролировать измерение, поэтому будем использовать первый.

Настройка режима АЦП происходит в регистре ADCSRA.

Последнее, что осталось, регистры результатов ADCH - старший бит ADCL - младший. Про них рассказывать не буду, на картинке все видно и понятно.

С теорией все! Теперь напишем программку! Для отладки и обучения АЦП соберем схему в Proteus. Будем делать следующее:

Измерять уровень на входе;

Выводить уровень в двоичном коде (с помощью 8 светодиодов).

Для этого будем работать в режиме ADLAR=1 и считывать только старшие биты ADCH (т.е. 2 младших бита мы теряем, теряется точность, но в допустимых для меня пределах). Программа написана в AVR Studio.

Int main(void) { DDRD=0xFF; ADMUX = 0b01100000;//Настроили верхний порог на напряжение AVCC подвели 3,3В //ADLAR=1 и снимаем АЦП с ножки ADC0 ADCSRA = 0b10001101; //Настраиваем режим АЦП, включаем Single Mode, снимаем АЦП с входа ADC0 _delay_us(10); while(1) { ADCSRA |= 0x40;//Включаем АЦП while((ADCSRA & 0x10)==0);//ждем завершения PORTD=ADCH;//выводим результат } }

Прошиваем смотрим что получилось. Когда синус увеличивается от 0 до 3.3, мы видим как значение растет до максимума, но когда синус уходит в отрицательную часть у нас стабильно 0.

Для решения этой проблемы нам надо поднять наш сигнал на 1.6 В (половина всего диапазона), т.е. надо прибавить к сигналу половину питания, а сам сигнал в 2 раза ослабить, чтобы значение на входе не превышало наши рамки 0-3.3 В. НО! Так как статья учебная, и тут главное все вам объяснить пойдем проще! Для проверки работы нашего устройства мы будем использовать выход со звуковой карты (а на ПК запущен генератор сигналов), поэтому мы просто кидаем резистор 470 Ом между +3 В и входом АЦП. Так мы получим желаемое смещение.

В итоге, мы сигнал оцифровали. Осталось вывести его на экран.

Для своего проекта я выбрал экран от nokia1100, почему? Да потому что только его нашел в своем городе + на него есть макет в Proteus. Можно использовать и другие, главное данные у нас уже есть (научились их получать!).

Описывать как инициализировать экран я не буду (в интернете и так много доступной информации, не хочу повторяться + я расставил как можно больше комментариев в исходниках), а просто приведу текст программы с комментариями:

#include "nokia1100.h" // Подключаем библиотеку NOKIA1100 unsigned int n={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01}; unsigned int deltaU=4,deltaT=0; unsigned int buffer; int flag=0; void LCD_Signal(int index,int znachenie,int deltaU){//функция вывода пикселя в столбце znachenie=znachenie/deltaU; unsigned int h; for(unsigned int i=0;i<8;i++){ nlcd_GotoXY(index,7-i); h=1; for(unsigned int j=0;j<8;j++){ if(i*8+j==znachenie){h=0; nlcd_SendByte(DATA_LCD_MODE,n[j]);} } if(h) nlcd_SendByte(DATA_LCD_MODE,0x00); } } void function_buttons(){//обработка кнопок while(PINB==0x01) flag=1; while(PINB==0x02) flag=2; if(flag==1)deltaU+=2; if(flag==2) deltaT+=10; } int main(void) { nlcd_Init();//инициализация дисплея _delay_us(10); ADMUX =0b01100000;//Настроили АЦП от 0 до AVCC на который мы подаем 3,3 В ADCSRA = 0b10001100;//Настраиваем режим АЦП, вход настраиваем так же на ADC0 while(1) { DDRB=0x00; PORTB=0x00; for(int i=0;i<96;i++){ ADCSRA |= 0x40;//Включаем АЦП while((ADCSRA & 0x10)==0);//Ждем завершения buffer[i]=ADCH;//Записываем в буфер _delay_us(deltaT);//задержка для уменьшения частоты дискритизации } for(int i=0;i<96;i++){//Выводим буфер на экран function_buttons(); LCD_Signal(i,buffer[i],deltaU); } } }

Подключаемые файлы находятся в архиве к статье!

Технические характеристики:

Оцифровка аналогового сигнала:

Напряжение 0-3В

Дискретизация до 153.9кГц.

Генератор:

Частота 0-533.3кГц

Напряжение 3В

Ток до 15мА

Батарейка 1.5В

Описание:

Данный осциллограф может быть полезен при ремонте и настройке аудио аппаратуры, так как он имеет встроенный генератор, а частота дискретизации позволяет измерять сигналы практически во всём диапазоне звуковых частот.

Осциллограф имеет 2 канала: аналоговый и цифровой. Оба канала отображаются на дисплее в виде временной диаграммы, аналоговый канал - синим цветом, цифровой - жёлтым. Синхронизация может осуществляться от обоихканалов. Также есть возможность переключения цифрового канала на выход и выдачи частоты от 20Гц до 533кГц с любой скважностью сигнала.

Управление осуществляется с помощью одной кнопки, которая выбирает задаваемый параметр, и потенциометра, с помощью которого изменяется выбранный параметр.

Интерфейс и управление

Информация на дисплее имеет следующий вид:

На канал 1(аналоговый вход) подана частота 50гц. Канал 2 включен в режим генератора и генерирует частоту 30Гц со скважностью 50%.

U 100 - это уровень синхронизации. Параметр влияет только когда синхронизация идёт от канала 1 (аналоговый вход).

T 025 - это смещение синхронизации по времени. 25 - четверть экрана. Таким образом, передний фронт смещён от левого края дисплея на 25 отчётов. Всего отчётов 100.

048мс - период развёртки. Между 2мя зелёными вертикальными полосками будет 48мс.

Стрелочка слева от цифры 048 – курсор, он указывает на текущий выбранный параметр.

/1 показывает режим синхронизации. Сейчас выбран передний фронт канала 1.Также может быть выбран задний, передний фронт любого из каналов или отключена синхронизация (символ “NO”).

30 – это частота генератора. Может быть значение частоты или значение IN – это указывает на то что канал 2 будет входным и частота не выдаётся.

Следующий параметр 000 указывает на скважность импульса. Он не выбран, поэтому скважность установлена по умолчанию - 50%.

Для того чтобы установить соответствующее значение параметра, необходимо нажатием на кнопку установить крусор « » напротив необходимого параметра, после чего поворотом потенциометра установить необходимое значение.

Если выбранный параметр привёл к зависанию - такое бывает, если включена синхронизация, а сигнала для синхронизации нет. В этом случае программа ждёт входной сигнал и не опрашивает потенциометр. Для выхода из этого режима необходимо кнопкой установить курсор на нужный параметр и, удерживая её, изменить параметр на подходящий, при котором синхронизация возможна или выключена.

Схема осциллографа

Схема осциллографа составлена на основе контроллера ATTiny 43U . Данный контроллер имеет встроенный DC -DC преобразователь, который позволяет питать схему от одной батарейки. Я применял элемент ААА. Встроенный DC-DC преобразователь поднимает напряжение батарейки (0.7В – 1.8В) до напряжения 3В., и питание ядра контроллера (и портов) происходит от 3В.

В качестве дисплея выбран дисплей от сотового телефона NOKIA6100, так как он цветной, имеет достаточно приличное разрешение 132х132 точек, управляется по протоколу SPI (для экономии портов) и уже имеет встроенную подсветку. К тому же он очень дешевый.

Также в схеме применён ещё один DC -DC преобразователь на основе микросхемы MC34063, он нужен для питания подсветки дисплея, поскольку на подсветку должно приходить примерно 6В с копейками.

В особой настройке схема не нуждается.

Программная часть:

Программа осциллографа написана на ассемблере в AVR Studio .

При реализации программы я столкнулся со следующими нюансами:

Поскольку дисплей имеет последовательный интерфейс, причём SPI с передачей 9 бит (подробно протокол работы с дисплеем описан в более ранней статье про БП), не получается реализовать передачу данных аппаратно. Поэтому обновление дисплея занимает длительное время. Полностью закрашивание дисплея происходит примерно около секунды (это нас никак не устраивает), поэтому при выводе на дисплей осциллограммы затирание происходит по предыдущему контуру совместно с прорисовкой новых данных. Это позволило ускорить процесс прорисовки осциллограммы почти в 100 раз. ОЗУ как раз хватило для хранения 2х буферов оцифрованных данных.

Для уменьшения объёма хранимой информации в ОЗУ данные обоих каналов хранятся в одном буфере, то есть в одном байте буфера хранятся значения состояний обоих каналов. Биты от 0 по 6 - это данные АЦП (поскольку нас вполне устраивает 7 бит оцифрованных данных) и бит 7 - это состояние канала 2.

Также для улучшения отображаемой картинки в программе рассчитываются промежуточные точки. Расчёт происходит как среднее арифметическое двух соседних значений АЦП, то есть при выводе текущей точки происходит вывод ещё одной точки в этом же ряду. Таким образом, происходит дополнение картинки и заполнения промежутков между отчётами.

Для устранения дребезга потенциометра применён метод накопления значений, расчёт значения потенциометра происходит вот по такой формуле:

A п=A п-Ап/256+АЦП, где Ап – это накопленное значение.

Таким образом, происходит как бы усреднение 256 значений потенциометра..

Про АЦП

По даташиту на чип частота дискретизации АЦП составляет 15кГц с максимальным разрешением при тактовой примерно 200кГц. Но допускается тактирование АЦП до 1Мгц. При частоте 1Мгц частота дискретизации получается 76кГц. А делителями можно задать гораздо больше. В ходе экспериментов тактированием АЦП получилось, что оно вполне себе работает при частоте 2МГц. Если больше, то уже увеличивается цикл измерения, и период измерений начинает гулять. В программе при изменении частоты дискретизации тактовая АЦП меняется от 62кГц до 2Мгц.

При настройке собранных электронных схем, особенно цифровых, необходимо бывает проводить различные измерения. Для этого можно пользоваться различными пробниками, например логическим пробником, самым простым, состоящим из светодиода, токоограничительного резистора, и проводков оканчивающихся с одного конца щупом, а с другого крокодилом. С его помощью мы можем убедиться, присутствует ли у нас логическая единица, или ноль, например на ножке МК, или выводе Ардуино. Я же решил пойти дальше, собрать то, что думаю заинтересует простотой сборки многих новичков, позволит получить полезные знаний из теории, посмотреть на форму сигнала, например, как это выглядит при мигании того же светодиода, и конечно же им можно будет проверить наличие логического ноля или единицы, на ножке МК. В общем, решил собрать простейший осциллографический пробник, с подключением к компьютеру по USB порту.

Данная схема является иностранной разработкой, откуда впоследствии она перекочевала в Рунет, и разошлась по множеству сайтов. В поисках детальной информации при его сборке, обошел множество сайтов, не меньше 10-12. На всех них были только краткое описание, переведенное и содранное с забугорного сайта и прошивка для скачивания, с примером выставления фьюзов. Ниже представлена схема этого осциллографического пробника:

Я сознательно не называю его чисто осциллографом, потому что он не дотягивает до этого звания. Давайте разберем подробнее, что же он представляет из себя. Бюджет устройства составляет всего 250, максимум 300 рублей, и его сборку может позволить себе любой школьник или студент. Как наглядного пособия, для отработки навыков пайки, прошивания МК, в общем, для отработки всех навыков, необходимых для самостоятельного конструирования цифровых устройств. Если кто-то сразу загорелся и собрался немедленно бежать в магазин, за покупкой радиодеталей, подождите, у этого осциллографического пробника, есть несколько существенных минусов. У него очень неудобный софт, оболочка, в которой собственно мы и будем наблюдать наш сигнал. На следующем фото показано, как я ловлю момеху от пальца:

Сказать, что оболочка сырая, это значит ничего не сказать… Даже оболочки для использования, в качестве низкочастотного осциллографа на звуковой карте, существенно обходят ее по своим возможностям. На следующем фото, на короткое время касаюсь щупами выводов батарейки:

Начнем с того, что показания у нас выводятся в милливольтах, и шкалы по напряжению, соответствующей реальным значениям, попросту нет. Но и это еще не все. Схема устройства, как мы можем увидеть, посмотрев на рисунок со схемой, основана на МК Tiny 45.

В данном устройстве не применяется внешний быстродействующий АЦП, и это её существенный недостаток. Это означает, что при измерении сигнала с частотой, на которую наш пробник - осциллограф не рассчитан, мы получим на экране, просто прямую линию… Недавно мне потребовалось провести ремонт пульта дистанционного управления, диагностика показала, что и питание приходит, и дорожки все целые, и контакты на плате, вместе с резиновыми кнопками почищены, все безрезультатно, пульт не подавал признаков жизни. На местном радиофоруме, мне предложили заменить керамический резонатор, на котором кстати не было ни трещин, ни каких других внешних признаков, по которым можно было бы решить, что деталь неисправна. Решил послушать совета, сходил в магазин и купил новый керамический резонатор на 455 кГц, стоимостью всего 5 рублей, перепаял его, и пульт сразу “ожил”.

К чему я это рассказываю? А к тому, что после сборки этого пробника, пришла в голову мысль проверить на пульте генерацию тактового сигнала. Не тут-то было. Пробник-осциллограф показал, на одной ножке резонатора условно низкий уровень, на другой высокий, и вывел прямую линию. Не справившись даже с частотой 455 кГц... Теперь, когда вы предупреждены о его минусах, вы можете сами определиться для себя, нужен ли вам такой осциллографический пробник. Если все же да, то продолжаем чтение)... Входное сопротивление обоих каналов осциллографа равно 1 МОм.

Для этой цели нам будет нужно приобрести и запаять подстроечные резисторы на 1 МОм, делитель сигнала 1\10. Соответственно сопротивления делителя, у нас должны составлять 900 и 100 КилоОм. Я решил использовать 2 канала осциллографа, так как был в наличии разъем - гнезда, распаянные на плате, два тюльпана, и разница в стоимости деталей для меня составляла, по сути, только стоимость подстроечного резистора. Другое дело, что оба канала оказались не идентичны по своим показаниям. Как мы видим на схеме один канал был рассчитан на работу с делителем, а другой нет. Ну да это не беда, если потребуется, чтобы и этот канал работал без делителя, нам достаточно выкрутить положения движка подстроечного резистора в ноль, тем самым подав сигнал с выхода, напрямую на ножку МК. Это может быть полезным при измерении сигналов, на двух линиях с низкой амплитудой. На следующем фото показано, как я снимаю сигнал с мультивибратора:

Также мы можем, покрутив регулятор подстроечного резистора, выставить, какой делитель нам требуется, 1\10, 1\25, 1\50, 1\100, или любой другой, измерив мультиметром сопротивление, между центральным выводом и крайними выводами подстроечного резистора. Это может потребоваться для измерения формы сигнала, с большой амплитудой напряжения. Для этого нужно будет лишь подсчитать, получившиеся соотношения сопротивлений делителя. Есть еще один важный нюанс, на иностранном сайте автора схемы, при выборе фьюзов указано, что нужно перевести фьюз - бит Reset Disable в положение включено. Как мы помним, отключение этого фьюз - бита, прекращает возможность последовательного программирования. Фьюзы которые нужно изменить, показаны на следующем рисунке:

В данной схеме Pin 1 Reset не используется как Pin, поэтому нам изменять этот фьюз-бит не обязательно. Но на одном из форумов, для более стабильной работы осциллографа - пробника, рекомендовали притянуть Pin Reset через резистор 10 килоОм к плюсу питания, что я и сделал. Также, когда искал информацию по нему, ни на одном из сайтов я не нашел понятного и доступного объяснения, насчет источника тактирования МК Tiny 45. Так вот, в этой схеме МК тактируется не от внутреннего RC - генератора, не от кварцевого резонатора, а от внешнего тактового сигнала, подаваемого на МК от USB порта. Логично предположить, что выбрав этот источник тактирования, МК перестанет у нас быть виден, в оболочке для прошивания, при отключении от USB порта, поэтому сначала залейте прошивку, а затем внимательно выставляйте фьюз биты.

Давайте разберем схему осциллографа более подробно, на сигнальных линиях USB порта D+ и D-, установлены согласующие резисторы на 68 Ом. Изменять их номинал не рекомендую. Между сигнальными жилами и землей, рекомендовано для снижения помех, установить керамические конденсаторы на 100 наноФарад. Такой же конденсатор на 100 наноФарад, нужно установить параллельно электролитическому, на 47 микроФарад, установленному по цепям питания +5 вольт и земля. Между землей и сигнальными линиями, должны быть установлены стабилитроны на 3.6 Вольта. Я правда поставил на 3.3 вольта, все работает нормально. Предусмотрена индикация включения на светодиоде, включенном последовательно с резистором 220-470 Ом.

Номинал в данном случае не критичен, и от него зависит только яркость свечения светодиода. Я установил на 330 Ом, яркость свечения достаточная. В схеме установлен резистор номинала 1.5-2.2 килоОма, для определения устройства операционной системой.

Подпаивайте провода USB кабеля к плате ориентируясь по распиновке кабеля, а не по расположению на схеме осциллографа. На схеме очередность следования жил указана произвольно. Также из несущественных недостатков, по отзывам пользовавшихся, после перезагрузки Windows, нам потребуется переткнуть осциллограф заново в USB порт. Не забудьте снять фьюз - бит делитель тактовой частоты на 8 CKDIV 8. Данный осциллограф не требует для своей работы, каких-то сторонних драйверов, и определяется как Hid устройство, аналогично мышке или клавиатуре. При первом подключении, устройство определится как Easylogger. На следующем рисунке, приведен список необходимых для сборки деталей.

Существует 6 версий программы Usbscope, оболочки, в которой собственно мы и наблюдаем график. Первые три версии не поддерживают 64-битные операционные системы Windows. Начиная с четвертой версии Usbscope, поддержка обеспечена. Для работы программы на компьютер должен быть установлен Netframework. На сайте автора были выложены исходники прошивки, и исходники программы-оболочки, так что возможно найдутся умельцы, которые смогут дополнить софт. Какое-же практическое использование данного осциллографа, неужели только как игрушка? Нет, данный прибор используется в автоделе домашними умельцами, как бюджетная замена дорогому осциллографу, для настройки автомобильных систем зажигания, расхода топлива и подобных нужд.

Видимо частота работы в автоделе достаточно низкая, и данного пробника минимально хватает, хотя бы для разовых работ. Для подключения к измеряемой схеме спаял два щупа, использовав для этого, с целью снизить уровень помех, экранированный провод, тюльпаны или разъем RCA. Это обеспечивает легкое подключение и отсоединение щупов от осциллографа.

  1. Один из проводов - щупов осциллографа, оканчивается для измерения щупом от мультиметра для сигнальной жилы, и крокодилом для подключения к земле.
  2. Второй щуп оканчивается крокодилами разных цветов, и для сигнальной жилы и для земли.

Вывод: сборка данного пробника, целесообразна, скорее как наглядное пособие, для изучения формы низкочастотных сигналов. Для практических целей, например для проверки и настройки импульсных блоков питания, в частности работы ШИМ контроллеров, данный пробник не годится однозначно, так как не может обеспечить необходимого быстродействия. Поэтому не может являться заменой, даже самому простому советскому осциллографу, и даже простым осциллографам с Али экспресс.

Скачать архив со схемой, прошивкой, скрином фьюзов и оболочкой осциллографического пробника, можно по ссылке . Всем успехов, специально для - AKV .

Обсудить статью USB ПРОБНИК-ОСЦИЛЛОГРАФ

Любому радиолюбителю сложно представить свою лабораторию без такого важного измерительного прибора, как осциллограф. И, действительно, без специального инструмента, позволяющего анализировать и измерять действующие в цепи сигналы, ремонт большинства современных электронных устройств невозможен.

С другой стороны, стоимость этих приборов нередко превышает бюджетные возможности рядового потребителя, что вынуждает его искать альтернативные варианты или изготавливать осциллограф своими руками.

Варианты решения проблемы

Отказаться от покупки дорогостоящих электронных изделий удаётся в следующих случаях:

  • Использование для этих целей встроенной в ПК или ноутбук звуковой карты (ЗК);
  • Изготовление USB-осциллографа своими руками;
  • Доработка обычного планшета.

Каждый из перечисленных выше вариантов, позволяющих изготавливать осциллограф своими руками, применим не всегда. Для полноценной работы с самостоятельно собранными приставками и модулями необходимо выполнение следующих обязательных условий:

  • Допустимость определённых ограничений по измеряемым сигналам (по их частоте, например);
  • Наличие опыта обращения со сложными электронными схемами;
  • Возможность доработки планшета.

Так, осциллограф из звуковой карты, в частности, не позволяет измерять колебательные процессы с частотами, находящимися за пределами её рабочего диапазона (20 Гц-20 кГц). А для изготовления USB-приставки к ПК потребуется определённый опыт сборки и настройки сложных электронных устройств (как и при подключении к обычному планшету).

Обратите внимание! Вариант, при котором удаётся изготовить осциллограф из ноутбука или планшета при простейшем подходе, сводится к первому случаю, предполагающему использование встроенной ЗК.

Рассмотрим, как реализуется на практике каждый из указанных выше методов.

Использование ЗК

Для реализации этого способа получения изображения потребуется изготовить небольшую по габаритам приставку, состоящую всего из нескольких доступных для каждого электронных компонентов. С её схемой можно ознакомиться на приведённой ниже картинке.

Основное назначение такой электронной цепочки – обеспечить безопасное поступление внешнего исследуемого сигнала на вход встроенной звуковой карты, имеющей «собственный» аналого-цифровой преобразователь (АЦП). Используемые в ней полупроводниковые диоды гарантируют ограничение амплитуды сигнала на уровне не более 2-х Вольт, а делитель из соединенных последовательно резисторов позволяет подавать на вход напряжения с большими амплитудными значениями.

К плате с резисторами и диодами со стороны выхода подпаивается провод с имеющимся на ответном конце штекером на 3,5 мм, который вставляется в гнездо ЗК под наименованием «Линейный вход». Исследуемый сигнал подаётся на входные клеммы.

Важно! Длина соединительного шнура должна быть по возможности короче, что обеспечивает минимальные искажения сигнала при очень низких измеряемых уровнях. В качестве такого соединителя рекомендуется использовать двухжильный провод в медной оплётке (экране).

Хотя пропускаемые таким ограничителем частоты относятся к НЧ диапазону, указанная предосторожность способствует повышению качества передачи.

Программа для получения осциллограмм

Помимо технического оснащения, перед началом измерений следует подготовить соответствующее программное обеспечение (софт). Это значит, что на ПК нужно установить одну из утилит, разработанных специально для получения изображения осциллограммы.

Таким образом, всего за час или чуть больше удаётся создать условия для исследования и анализа электрических сигналов посредством стационарного ПК (ноутбука).

Доработка планшета

Использование встроенной карты

Для того чтобы приспособить обычный планшет под снятие осциллограмм можно воспользоваться уже описанным ранее способом подключения к звуковому интерфейсу. В этом случае возможны определённые затруднения, так как дискретного линейного входа для микрофона у планшета нет.

Решить эту проблему удаётся следующим образом:

  • Нужно взять гарнитуру от телефона, в составе которой должен иметься встроенный микрофон;
  • Затем следует уточнить разводку (распиновку) входных клемм на используемом для подключения планшете и сравнить её с соответствующими контактами на штекере гарнитуры;
  • При их совпадении можно смело подключать источник сигнала вместо микрофона, используя уже рассмотренную ранее приставку на диодах и резисторах;
  • В завершении останется установить на планшете специальную программу, способную анализировать сигнал на микрофонном входе и выводить на экран его график.

Преимущества данного способа подключения к компьютеру – это простота реализации и дешевизна. К его минусам следует отнести малый диапазон измеряемых частот, а также отсутствие стопроцентной гарантии безопасности для планшета.

Преодолеть эти недостатки удаётся за счёт применения специальных электронных приставок, подключаемых через Bluetooth-модуль или посредством Wi-Fi-канала.

Самодельная приставка к Bluetooth-модулю

Подключение по «Bluetooth» осуществляется с помощью отдельного гаждета, представляющего собой приставку со встроенным в неё микроконтроллером АЦП. За счёт использования самостоятельного канала обработки информации удаётся расширить полосу пропускаемых частот до 1 МГц; при этом величина входного сигнала может достигать 10 Вольт.

Дополнительная информация. Радиус действия такой самостоятельно изготовленной приставки может достигать 10-ти метров.

Однако собрать такое преобразовательное устройство в домашних условиях способен не каждый, что существенно ограничивает круг пользователей. Для всех не готовых к самостоятельному изготовлению приставки возможен вариант приобретения готового изделия, с 2010 года поступающего в свободную продажу.

Приведённые выше характеристики могут устроить домашнего мастера, занимающегося ремонтом не очень сложной низкочастотной аппаратуры. Для более трудоёмких ремонтных операций могут потребоваться профессиональные преобразовательные устройства с полосой пропускания до 100 МГц. Эти возможности может обеспечить Wi-Fi-канал, поскольку скорости протокола обмена данными в этом случае несравнимо выше, чем в «Bluetooth».

Осциллографы-приставки с передачей данных по Wi-Fi

Вариант передачи цифровых данных по этому протоколу заметно расширяет пропускные способности измерительного устройства. Работающие по данному принципу и свободно продающиеся приставки не уступают по своим характеристикам некоторым образцам классических осциллографов. Однако стоимость их также далека от того, чтобы считаться приемлемой для пользователей со средними доходами.

В заключение отметим, что с учётом приведённых выше ограничений вариант подключения по Wi-Fi также подходит лишь для ограниченного круга пользователей. Тем же, кто решил отказаться от этого способа, советуем попытаться собрать цифровой осциллограф , обеспечивающий те же характеристики, но за счёт подключения к USB-входу.

Данный вариант также очень сложен в реализации, так что тем, кто не до конца уверен в своих силах, разумнее будет приобрести имеющуюся в свободной продаже готовую USB-приставку.

Видео

Этот простой и дешёвый USB осциллограф был придуман и сделан просто ради развлечения. Давным давно довелось чинить какой-то мутный видеопроцессор, в котором спалили вход вплоть до АЦП. АЦП оказались доступными и недорогими, я купил на всякий случай парочку, один пошёл на замену, а другой остался.


Недавно он попался мне на глаза и почитав документацию к нему я решил употребить его для чего-нибудь полезного в хозяйстве. В итоге получился вот такой приборчик. Обошёлся в копейки (ну рублей 1000 примерно), и пару выходных дней. При создании я постарался уменьшить количество деталей до минимума, при сохранении минимально необходимой для осциллографа функциональности. Сначала я решил, что получился какой-то уж больно несерьёзный аппарат, однако, сейчас я им постоянно пользуюсь, потому что он оказался весьма удобным - места на столе не занимает, легко помещается в карман (он размером с пачку сигарет) и обладает вполне приличными характеристиками:

Максимальная частота дискретизации - 6 МГц;
- Полоса пропускания входного усилителя - 0-16 МГц;
- Входной делитель - от 0.01 В/дел до 10 В/дел;
- Входное сопротивление - 1 МОм;
- Разрешение - 8 бит.Принципиальная схема осциллографа показана на рисунке 1.

Для разных настроек и поиска неисправностей во всяких преобразователях питания, схемах управления бытовой техникой, для изучения всяких устройств и т.д., там где не требуются точные измерения и высокие частоты, а нужно просто посмотреть на форму сигнала частотой, скажем, до пары мегагерц - более чем достаточно.

Кнопка S2 - это часть железа нужного для бутлоадера. Если при подключении осциллографа к USB держать её нажатой, то PIC заработает в режиме бутлоадера и можно будет обновить прошивку осциллографа при помощи соответствующей утилиты. В качестве АЦП (IC3) была использована "телевизионная" микросхема - TDA8708A. Она вполне доступна во всяких "Чип и Дип"ах и прочих местах добычи деталей. На самом деле это не только АЦП для видеосигнала, но и коммутатор входов, выравниватель и ограничитель уровней белого - чёрного и т.д. Но все эти прелести в данной конструкции не используются. АЦП весьма шустр - частота дискретизации - 30 МГц. В схеме он работает на тактовой частоте 12 МГц - быстрее не нужно, потому что PIC18F2550 просто не сможет быстрее считывать данные. А чем выше частота - тем больше потребление АЦП. Вместо TDA8708A можно использовать любой другой быстродействующий АЦП с параллельным выводом данных, например TDA8703 или что-нибудь от Analog Devices.

Тактовую частоту для АЦП удалось хитрым образом извлечь из PIC"а - там запущен ШИМ с частотой 12 МГц и скважностью 0.25. Тактовый импульс положительной полярности проходит в цикле Q1 PIC"а так что при любом обращении к порту B, которое происходит в цикле Q2 данные АЦП будут уже готовы. Ядро PIC"а работает на частоте 48 МГц, получаемой через PLL от кварца 4 МГц. Команда копирования из регистра в регистр выполняется за 2 такта или 8 циклов. Таким образом, данные АЦП возможно сохранять в память с максимальной частотой 6 МГц при помощи непрерывной последовательности команд MOVFF PORTB, POSTINC0. Для буфера данных используется один банк RAM PIC18F2550 размером 256 байт.

Меньшие частоты дискретизации реализуются добавлением задержки между командами MOVFF. В прошивке реализована простейшая синхронизация по отрицательному или положительному фронту входного сигнала. Цикл сбора данных в буфер запускается командой от PC по USB, после чего можно эти данные по USB прочитать. В результате PC получает 256 8-битных отсчётов которые может, например, отобразить в виде изображения. Входная цепь проста до безобразия. Делитель входного напряжения без всяких изысков сделан на поворотном переключателе. К сожалению не удалось придумать как передавать в PIC положение переключателя, поэтому в графической морде осциллографа есть только значения напряжения в относительных единицах - делениях шкалы. Усилитель входного сигнала (IC2B) работает с усилением в 10 раз, смещение нуля, необходимое для АЦП (он воспринимает сигнал в диапазоне от Vcc - 2.41В до Vcc - 1.41В) обеспечивается напряжением с программируемого генератора опорного напряжения PIC (CVREF IC1, R7,R9) и делителем от отрицательного напряжения питания (R6,R10, R8). Т.к. в корпусе ОУ был "лишний" усилитель (IC2A), я использовал его как повторитель напряжения смещения.

Не забудьте про емкостные цепочки для частотной компенсации входной ёмкости вашего ОУ и ограничивающих диодов, которые отсутствуют на схеме - нужно подобрать ёмкости параллельно резисторам делителя и резистору R1, иначе частотные характеристики входной цепи загубят всю полосу пропускания. С постоянным током всё просто - входное сопротивление ОУ и закрытых диодов на порядки выше сопротивления делителя, так что делитель можно просто посчитать не учитывая входное сопротивление ОУ. Для переменного тока иначе - входная ёмкость ОУ и диодов составляют значительную величину по сравнению с ёмкостью делителя. Из сопротивления делителя и входной ёмкости ОУ и диодов получается пассивный ФНЧ, который искажает входной сигнал.

Чтобы нейтрализовать этот эффект нужно сделать так, чтобы входная ёмкость ОУ и диодов стала значительно меньше ёмкости делителя. Это можно сделать соорудив емкостной делитель параллельно резистивному. Посчитать такой делитель сложно, т.к. неизвестна как входная ёмкость схемы, так и ёмкость монтажа. Проще его подобрать.

Способ подбора такой:
1. Поставить конденсатор ёмкостью примерно 1000 пФ параллельно R18.
2. Выбрать самый чувствительный предел, подать на вход прямоугольные импульсы с частотой 1 кГц и размахом в несколько делений шкалы и подобрать конденсатор параллельно R1 так, чтобы прямоугольники на экране выглядели прямоугольниками, без пиков или завалов на фронтах.
3. Повторить операцию для каждого следующего предела, подбирая конденсаторы параллельно каждому резистору делителя соответственно пределу.
4. Повторить процесс с начала, и убедиться, что на всех пределах всё в порядке (может проявиться ёмкость монтажа конденсаторов), и, если что-то не так, слегка подкорректировать ёмкости.

Сам ОУ - это Analog Devices AD823. Самая дорогая часть осциллографа. :) Но зато полоса 16 МГц - что весьма неплохо.А кроме того, это первое из шустрого, что попалось в розничной продаже за вменяемые деньги.

Конечно же этот сдвоенный ОУ без всяких переделок можно поменять на что-то типа LM2904, но тогда придётся ограничится сигналами звукового диапазона. Больше 20-30 кГц оно не потянет.

Ну и форму прямоугольных, например, сигналов будет слегка искажать. А вот если удастся найти что-то типа OPA2350 (38МГц) - то будет наоборот замечательно.

Источник отрицательного напряжения питания для ОУ сделан на хорошо известной charge-pump ICL7660. Минимум обвязки и никаких индуктивностей. Ток по выходу -5 В конечно у неё невелик, но нам много и не надо. Цепи питания аналоговой части изолированы от помех цифры индуктивностями и ёмкостями (L2, L3, C5, C6). Индуктивности попались номиналом 180 uГн, вот их и поставил. Никаких помех по питанию даже на самом чувствительном пределе. Прошивка PIC заливается по USB с помощью бутлоадера который сидит с 0-го адреса в памяти программ и запускается если при включении удерживать нажатой кнопку S2. Так что прежде чем прошивать PIC - залейте туда сначала бутлоадер - будет проще менять прошивки.
Исходники драйвера осциллографа для ядер 2.6.X находятся в архиве с прошивкой. Там же есть консольная утилитка для проверки работоспособности осциллографа. Её исходники стоит посмотреть, чтобы разобраться как общаться с осциллографом, если хочется написать для него свой софт.
Программа для компьютера проста и аскетична, ее вид показан на рисунках 2 и 3. Подключить осциллограф к USB и запустить qoscilloscope. Требуется QT4.

Во вложении- все файлы к проекту







2024 © sdelano-krasnodar.ru.