Механические приборы для непосредственного измерения расстояний. Измеритель расстояния на местности


39 Мерные приборы для непосредственного измерения расстояний.

Измерниние линий на местности – один из самых распространенных видов геодезических измерений. Без измерения линий не обходится ни одна геодезическая работа. Линии измеряют на горизонтальной, наклонной и вертикальной плоскости. Их производят непосведственно – металлическими, деревянными метрами, улетками, землемерными лентами и спец проволками, а также косвенно- электронными, нитяными и другими дальномерами. Рулетки выпускают стальные и тесёмочные длиной 1,2,5,10,20,30,50, и 100 м шилиной 10-12 мм, толщиной 0,15…0,30 мм. На полотны рулетки наносят штрихи – деления через 1 мм по всей длине или только на первом дециметрею в последнем случае все остальное полотно размечают сантиметровыми штрихами. Цифры подписывают у каждого дециметрового деления.стальные рулетки выпускают либо с полотном, намотанном на крестовины, либо в футляре. Для измерений коротких отрезков металлические рулетки делают изогнутыми по ширине- желобковыми. Длинномерные рулетки типа РК (на крестовине) и РВ (на вилке) применяют в комплекте с приборами для натяжения- динамометрами. Тесёмочные рулетки состоят из плотного полотна с метал, обычно медными поджилками. Полотно тесёмочной рулетки покрыто краской и имеет деления через 1см. тесёмочными рулетками пользуются, когда не трубуется высокая точность измерений. Тесемочные рулетки свертываются в пластмассовый корпус. Землемерная лента. ЛЗ– стальная полоса – 20 24 30 и 50 метров шириной 1…15 мм и толщиной 0,5 мм.на концах ленты нанесено по одному штриху 1, между которыми и считается длина ленты. У штрихов сделаны вырезы, в которых вчтавляют шпильки, фиксируя злины измеряемых отрезков. Оканчивается лента ручками. На каждой плоскости ленты отмечены деления через 1, 0,5 и 0,1 мюметры на ленте отмечены медными пластинами полуметровые - заклепками.землемерная шкаловая лента ЗЛШ отличается наличием на её концах шкал с миллиметровами делениями. Длины отрезков на концах ленты с миллим делениями равны 10 см. номинальной длиной ленты яв расстояние между нулевыми штрихами шкал. В комплекте ЛЗ и ЗЛШ входят наборы шпиле 6-11 штук. Для переноса шпильки одеваются на проволочное кольцо. Для некоторых видов точных измерений применяют спец инварные проволки. Инвар обладает малым коэффициентом линейного расширения. На концах проволки закреплены спец шкалы линейки с наименш делением 1 мм. На остальной части проволки маркировки нет. Поэтому измеряют расстояния равные длине между штрихами 24 м расстояния не кратные 24 м измеряют инварными рулетками.

40 Компарирование мерных приборов

До начала работы мерные приборы сравнивают с эталонами – компарируют. За эталоны принимают отрезки линий на месности или в либоратории, длины которых известны с особой точностью. Длинна l мерного прибора ленты или рулетки выражается уравнением, - l=l0+дельтаl k+ дел l t где l0- нормальная длина ленты при нормальной температуре РФ - +20 град. 2 цифра поправка компарирования, 3 поправка из-за температуры.чтобы вычислить номинальную длину мерного прибора для каждого темпер режима эксплуатации нужно-сначала опред величину поправки из-за тепмературы. Известно, тчо коэффициент линейного расширения стали при изменении темпер на 1 град = 12,5 х10 в степени –6. в производственных условиях мерные приборы чаще всего эталонируют на полевых компараторах. Эти компараторы представляют собой выровненные участки месности преимущественно с твердым покрымием. Концы компаратора закрепляют знаками со спец метками, расстояние между которыми известно с большой точностью. Компарирование длинномерных рулеток и лент полевых условиях производят на компараторах, длина которых, как правило, близка к 120 м. Это нужно чтобы уложить мерный прибор в компараторе несколько раз. Уложение мерных приборов ведут в прямом и обратном направлениях.

Подсчитывают число целых и дробных уложений рулетки или ленты и опред поправку за коппарирование по формуле дельта l k = (l0-l e)|n где n- число уложений мерного прибора I e измеренная длина компаратора.

42 Оптические дальномеры. Нитяной дальномер.

Дальномерами называются геодезические приборы, с помощью которых расстояние между двумя точками измеряют косвенным способом. Дальномеры подразделяют на косвенные и оптические и электронные.оптические дальномеры делятся на ддальномеры с постоянным параллактическим углом и с постоянным базисом.электронные дальномеры – на электронно-оптические (светодальномеры) и радиоэлектронные(радиодальномеры). Простейший оптический дальномер с постоянным углом – нитяной дальномер имеется в зрительных трубах всех геодезических приборов. В поле зрения трубы прибора видны три горизонтальные нити. Две из них расположенные симметрично относительно средней нити, наз дальномерными. Нитяной дальномер применяют в комплекте снивелирной рейкой, разделенной на сантиметровые деления. Нитяным дальномером можно измерить линии длиной до 300 м с погрешностью 1/300 от длины.

44Светодальномеры и радиодальномеры

в основе электронных средств измерения лежит известное из физики соотношение S=vt|2 между измеряемымирасстоянием и скоростьюраспространения электромагнитных колебаний вдоль измеряемой линии и обратно. Из-за особенностей излучения приема и распространения радиоволн радиодальномеры применяют главным образом при измерении сравнительно больших расстояний и в навигации. Светодальномеры же, использующие электромагнитные колебания светового диапазона, широко применяют в практике инженерно-геодезических измерений. Для измерения расстояния АВ в точке А устанавливают светодальномер, а в точке В – отражатель. Световой поток посылается из передатчика на отражатель, который отражает его обратно. Время распрастранения световых волн определяется 2 способами – 1 прямым и 2 косвенным методом. Прямое опред промежутка времени осущ в дальномерах, наз импульсными. В них измерение времени производится по запаздыванию принимаемого после отражения светового импульса по отношению к моменту его излучения. Косвенное опред времени основано на измерении разности фаз двух эл. Маг колебаний.светодальномера с пассивным отражением измеряют расстояние до предметов без отражателя т. е. исп отражательные свойства самих предметов. (ДИМ-2) в настоящее время известны дальномеры с пассивн отражением и погрешностью до 10 мм.

52) Теодолитной съемкой наз горизонтальная или контурная съемка местности, которая выполняется с помощью теодолита. Теодолитом измеряются горизонтальные углы и углы наклона. Линии измеряются стальной лентой и дальномерами различных конструкций.

По результатам теодолитной съемки может быть составлен план без изображения рельефа. Для получения плана с изображением рельефа необходимо произвести нивелирование поверхности, на которой выполнялась теодолитная съемка. Сочетание теодолитной съемки и нивелирования поверхности целесообразно применять для получения плана строительного участка. Процесс теодолитной съемки складывается из следующих видов работ: проложения теодолитных ходов, привязка их к пунктам геодезической сети, съемка ситуации.

48)Плановым обоснованием теодолитной съемки служат теодолитные ходы, которые прокладываются в виде замкнутых полигонов и разомкнутых ходов. При съемке населенного пункта или участка для строительства обычно на границе прокладывается замкнутый полигон. Для обеспечения съемки ситуации и для контроля измерений внутри полигона может быть проложен диагональный ход. Разомкнутый теодолитный ход должен быть вытянутым т.е. с углами поворота, по возможности, близким к 180 0 , и прокладывается как правило, между пунктами триангуляции или полигонометрии.

Проложение теодолитных ходов начинается с закрепления на местности колышками или деревянными столбами вершин углов поворота. Точки углов поворота теодолитного хода выбирают так, чтобы стороны между соседними точками было удобно измерять, а длины их были не более 350 м и не менее 20 м. Линии измеряются дважды, в прямом и обратном направлениях. Углы поворота в теодолитных ходах измеряют обычно правые походу лежащие. Измерения выполняются при двух положениях вертикального круга и за окончательный результат принимается среднее из двух измерений, если разница не превышает двойной точности прибора. Углы наклона линий измеряют с помощью вертикального круга теодолита. Результаты угловых и линейных измерений записывают в журнал установленной формы.

49) При теодолитной съемке получают геодезический журнал измерений углов, линий и абрис. Эти документы служат основанием для построения плана. Поэтому обработку результатов полевых измерений начинают с проверки правильности всех записей и вычислений, сделанных в журнале, а также вычислений поправок за наклон сторон теодолитного хода. Дальнейшая обработка измерений при теодолитной съемке складывается из следующих действий: обработка угловых измерений и вычисление дирекционных углов и румбов сторон, вычисленных приращений и координат вершин теодолитного хода, построение плана участка теодолитной съемки.

Угловая невязка замкнутого хода. f b =åb п -180 0 (n-2)

Допустимая предельная невязка суммы углов f b =1`√n, распределяется с обратным знаком поровну на все углы с округлением до 0,1`

Вычисление дирекционных углов и румбов сторон замкнутого хода. Исходный дирекционный угол a 1 , получают привязкой стороны к пунктам геодезической сети или определяют для нее истинный или магнитный азимут. По известному дирекционному углу a 1 и по исправленным углам b вычисляют дирекционные углы всех сторон замкнутого хода по формулам: a n =a n-1 +180 0 -b n ; a 1 =a n +180 0 -b 1 (контроль измерений)

Угловая невязка разомкнутого теодолитного хода f b =åb n -åb т

57) Геодезическая сеть – это система закрепленных точек земной поверхности, положение которых определено в общей для них системе геодезических координат. Геодезическая сеть бывает 2-х видов: плановая и высотная. В России геодезические сети, как плановые, так и высотные, подразделяются на государственную геодезическую сеть, геодезическую сеть сгущения и съемочную геодезическую сеть. Государственная геодезическая сеть является исходной для построения всех других геодезических сетей. Сеть сгущения служит для дальнейшего увеличения количества точек геодезической сети. Съемочная сеть является геодезическим обоснованием для производства топографических съемок, а также для выполнения различного рода инженерно-геодезических работ.

Плановые геодезические сети создаются методами триангуляции, полигонометрии и трилатерации.

При построении геодезической сети методом триангуляции на местности закрепляют ряд точек, которые в своей совокупности образуют систему треугольников. В треугольниках измеряются все углы и некоторые стороны, которые наз базисными.

Метод полигонометрии заключается в построении на местности ломанных линий, наз полигонометрическими ходами. Эти ходы прокладываются обычно между пунктами триангуляции. В полигонометрических ходах измеряются все углы поворота и длины всех сторон.

При построении сети методом трилатерации на местности также строится сеть треугольников, в которых при помощи свето- и радиодальномеров измеряются все стороны.

Высотная геодезическоя сеть строится методом геометрического или тригонометрического нивелирования.

51) Съемку местности производят в зависимости от конкретных условий местности одним из следующих методов: прямоугольных координат, полярным, прямых угловых засечек, линейных засечек, обхода, створов.

При съемках методом прямоугольных координат положение каждой ситуационной точки местности устанавливают по величинам абсциссы Х(расстояние от ближайшей точки съемочного обоснования по стороне теодолитного хода или расстоянием от начала трасы) и ординатой Y(расстояние от соответствующей стороны теодолитного хода или от трассы). Определение ординат Y обычно производят с помощью зеркального эккера и рулетки.

Метод прямоугольных координат наиболее часто используют при съемке притрассовой полосы линейных сооружений в ходе разбивки пикетажа. Ширину съемку притрассовой полосы в масштабе 1:2000 принимают по 100 м в обе стороны от трассы, при этом в пределах ожидаемой полосы отвода съемку ведут инструментально, а далее глазомерно.

Теодолитную съемку методом полярных координат применяют преимущественно в открытой местности, при этом положение каждой ситуационной точки определяют горизонтальным углом b, измеряемым от соответствующей стороны теодолитного хода, и расстоянием S, измеряемым от соответствующей точки съемочного обоснования. Съемку характерных точек местности наиболее часто осуществляют оптическими теодолитами с измерением расстояний нитяным дальномером.

Съемка методом полярных координат оказывается особенно эффективной при использовании электронных тахеометров.

Метод прямых угловых засечек применяют главным образом в открытой местности, там, где не представляется возможным производить непосредственное измерение расстояний до интересуемых точек местности. Положение каждой снимаемой точки относительно соответствующей стороны теодолитного хода определяют измерением двух горизонтальных углов b1 и b2, примыкающих к базису. В качестве базиса обычно служит одна из сторон съемочного обоснования или её часть. Съемку методом прямых угловых засечек обычно ведут оптическими теодолитами и особенно часто используют при производстве гидрометрических работ на реках: измерение поверхностных скоростей течения поплавками, траекторий льдин и речных судов, при выполнении подводных съемок дна русел рек и водоемов и т. д.

Метод линейных засечек применяют, если условия местности позволяют легко и быстро производить линейные измерения до характерных ситуационных точек местности. Измерения производят лентами или рулетками от базисов, расположенных на сторонах съемочного обоснования. Положение каждой снимаемой точки местности определяют измерением двух горизонтальных расстояний s1 и s2 с разных концов базиса.

Метод обхода реализуют проложение теодолитного хода по контуру снимаемого объекта с привязкой этого хода к съемочному обоснованию. Углы b1,b…, bn снимают при одном положении круга теодолита, а измерения длин сторон осуществляют землемерной лентой или рулеткой, нитяным дальномером или светодальномером электронного тахеометра.

Метод обхода используют, как правило, в закрытой местности для обозначения недоступных объектов значительной площади.

Суть метода створов состоит в том, что на прямо между двумя известными точками, размещенными на сторонах съемочного обоснования, с помощью одного из мерных приборов определяют положение характерных ситуационных точек местности.

Метод створов находит применение, главным образом, при изыскании аэродромов, для установления ситуационных особенностей местности в ходе топографических съемок методом геометрического нивелирования по квадратам. При производстве изысканий других инженерных объектов метод створов применяют крайне редко.

50) Теодолитная съемка явл съемкой ситуационной, при которой горизонтальные углы измеряются теодолитом, а горизонтальные

проекции расстояний различными мерными приборами. Превышения между точками местности при этом не определяют, поэтому теодолитная съемка явл частным случаем тахеометрической съемки.

Тахеометрическая съемка явл самым распространенным видом наземных топографических съемок, применяемых при инженерных изысканиях объектов строительства. Высокая производительность тахеометрических съемок обеспечивается тем, что все измерения, необходимые для определения пространственных координат характерных точек местности, выполняются комплексно с использованием одного геодезического прибора – теодолита тахеометра.

Для составления топографических планов участков местности со слабовыраженным рельефом необходима повышенная точность топографической съемки. В таких случаях может быть применен метод геометрического нивелирования, который строят способами:

Способ поперечников к магистральному ходу.

Способ параллельных линий

Способ полигонов

Способ квадратов

Фототеодолитная съемка позволяет определять координаты точек местности и составлять топографические планы, а также готовить цифровые модели местности по фотоснимкам, получаемым при фотографировании земной поверхности.

Аэрофотосъемкой наз комплекс работ, выполняемых для получения топографических планов и цифровых моделей местности с использованием материалов фотографирования местности с летательных аппаратов или из космоса.


В порядке, определенном Правительством Российской Федерации; - организации и обеспечения воинских и специальных железнодорожных перевозок; - руководства мобилизационной подготовкой и гражданской обороной на железнодорожном транспорте; - осуществления государственного контроля (надзора) за деятельностью физических и юридических лиц на железнодорожном транспорте, в том числе в части безопасности...

Частности, в отношении услуг, которые могут повлиять на здоровье граждан или нанести ущерб окружающей среде). Технические регламенты будут двух видов: общие (например, по вопросам экологической безопасности) и специальные (учитывающие особенные виды деятельности). Стандартизация будет носить добровольный характер. Лицензирование отдельных видов деятельности в области охраны окружающей среды. В...

Помощь, предоставляемую коммерческим организациям, являющимся юридическими лицами по законодательству Российской Федерации, в форме субвенций, субсидий, бюджетных кредитов, в т.ч. в виде ресурсов, отличных от денежных средств. Таким образом, взаимоотношения предприятия с бюджетом проходят только через налогообложение. При этом предприятие имеет право использовать все предоставляемые законодатель

Культурный и этнографический музей-заповедник «Кижи»; Госфильмофонд РФ; Государственный мемориальный и природный заповедник «Музей-усадьба Л.Н. Толстого «Ясная поляна»; Московская фабрика декоративной росписи; Российский государственный архив древних актов; – объекты, необходимые для функционирования федеральных органов государственной власти и решения общероссийских задач. К их числу относится...

Дальномер – это устройство, которое предназначено для определения точного расстояния от наблюдателя до конкретного объекта. Прибор просто необходим в инженерной геодезии, строительстве линий передач и путей сообщения, сельском хозяйстве, туризме, навигации, военном деле…

Классификация приборов для определения дальности

Когда и где появились первые измерители дальности? Впервые в продаже это приспособление вышло в 1992 году на Западе, но его стоимость доходила до нескольких тысяч долларов. И только спустя четыре года эти устройства стали доступны более широкому кругу пользователей. Затем уже многие фирмы стали работать в данном направлении. А сегодня разновидностей этого инструмента довольно много, самые точные используют принцип лазера в работе, известной моделью считается дальномер лейка (Leica), в ассортименте имеются и другие приборы похожего назначения, например, на лазерах.

В чем же заключается принцип действия? Модели активного типа измеряют расстояние при помощи времени, затраченного посланным сигналом на прохождение пути до объекта и обратно . Скорость, с которой данный сигнал распространяется, предварительно, естественно, известна (звуковая и световая скорость). Определение расстояния с помощью пассивных вариантов прибора основано на вычислении высоты равнобедренного треугольника. Активные делят на три типа: звуковые, световые, лазерные. А пассивные на два: оптические и нитяные.

Дальномеры активного типа – изучаем работу инструментов

Звуковые модели измеряют расстояние до предметов, которые отражают звуковые волны. Работают по принципу эхолокатора, то есть сначала происходит излучение короткого звукового импульса, который имеет очень высокую частоту. Затем включается микрофон, и происходит отсчет времени, за которое звуковой импульс вернется обратно, отразившись от какого-либо объекта. Когда вернувшийся сигнал достигнет датчика, будет известен результат. Световые типы приспособления для измерения расстояния используют модуляции света по яркости с постоянной или же переменной частотой.

Расстояние высчитывается за счет разности фаз между отраженным и посланным светом. Для этого требуется наличие сложных электронных и электрических устройств в приборе. Именно с помощью световых моделей было установлено точное расстояние от Земли до Луны. Лазерные инструменты включают в себя главные элементы устройства – отражатель и излучатель. При помощи специальных функциональных клавиш можно задать точку отсчета и пользоваться всеми программными возможностями прибора. Также некоторые модели оснащены дополнительными функциями – отражательная панель для проверки, измерение температуры воздуха, выбор системы измерений, настройка автоматического отключения, индикатор батареи.

В процессе работы с лазерным приспособлением не требуется помощь второго человека, как, например, в случае с . Для того чтобы вычислить расстояние до определенного объекта, необходимо навести на него лазерный луч. Устройство измеряет время, за которое луч проходит от него до объекта, а после его отражения возвращается обратно. В результате производятся подсчеты, и данные выводятся на экран. Измерять можно как горизонтальные, так и вертикальные плоскости. С помощью лазерного дальномера можно также измерить объем помещения и его общую площадь.

Кроме того, такое устройство дает уникальную возможность измерить лишь определенный фрагмент стены, а не всю ее полностью. Можно также определить ширину и высоту объекта.

Огромным плюсом является то, что лазерный прибор может вычислить среднее значение нескольких измерений, а точность при этом будет на очень высоком уровне. Также имеется возможность узнать площадь и круглых предметов, а не только прямоугольных или квадратных. Если помещение имеет наклонный потолок, то инструмент определит не только площадь, но и угол наклона, и длину ската. Все измерения можно проводить на расстоянии до 200 метров. В случае, если прибор необходим вам для измерения исключительно только помещений, достаточно будет приобрести устройство, дальность измерений которого не превышает 50 метров. Если вы собираетесь работать с большими расстояниями, то необходимо также воспользоваться штативом и отражающей пластиной, это позволит получить более точные результаты. Но не все модели могут крепиться на штатив, это нужно уточнять у продавца.

Основные характеристики лазерных инструментов зависят не только от конструкции, например, диапазон измерения зависит от мощности источника излучения и от внешних условий работы, например, на дальность влиять будет освещение. Стоит отдельно отметить, что она снижается, если измерения проводятся под открытым небом. У бытовых моделей наблюдаются небольшие погрешности, и эти погрешности возрастают при измерениях на больших расстояниях. Но даже такие варианты лазерных устройств сравнительно дорогие.

Меряем дальность пассивными методами

Оптический дальномер может быть двух типов – стереоскопический и монокулярный. Несмотря на то, что они отличаются по конструкции деталей, основная схема у них одинаковая, кроме того, принципы работы идентичны. По двум известным углам треугольника, а также одной известной стороне определяется его неизвестная сторона. Два телескопа строят изображение объекта. Кажется, что объект наблюдается в разных направлениях. Кроме того, такие приборы могут быть как с полным наложением полей, так и с половинным – верхняя половина изображения от одного телескопа объединяется с нижней половиной другого.

Монокулярные модели являются разновидностью оптических, работают также по принципу совмещения изображений, очень часто встраиваются в фототехнику для получения более резкого изображения . Преимущества монокулярных дальномеров в том, что нет необходимости в точной горизонтальной наводке, а изображение при измерении смещается как в правом, так и в левом поле. К недостаткам монокулярных приборов относится высокая утомляемость оператора, так как работа производится одним глазом, также с ними практически невозможна работа с движущимися объектами, а объекту нужно иметь четкую образующую, которая расположена на девяносто градусов к линии раздела поля, иначе точность измерения значительно снизится.

Стереоскопические модели также являются разновидностью оптических, имеют двойную зрительную трубу. В фокальной плоскости находятся метки, и изображение объекта совмещается с изображением этих меток, расстояние полностью пропорционально смещению компенсатора. Основное преимущество стереоскопического инструмента над монокулярным – более точные измерения расстояния. Именно они используются для того, чтобы определить дальность, а также высоту полета и его угловые координаты. Самые мощные стереоскопические приборы способны работать на расстояния до 50 000 метров, что же касается измерения высоты, то здесь цифры немного меньше – до 20 000 метров.

Нитяной вариант измерителей дальности – самый простой вид инструмента подобного назначения, имеющий постоянный параллактический угол, именно поэтому можно сделать такой дальномер своими руками, если вдруг вам понадобилось измерить дальность, а бегать по магазинам нет времени, или жаль денег. Он может определять расстояния до 300 метров. В качестве базы у данного устройства используется нивелирная рейка, имеющая сантиметровое деление, а в поле зрения трубы видны специальные линии. Принцип работы: для точного определения расстояния подсчитывается число делений, которые находятся между линиями, а искомым, в конечном итоге, будет расстояние в метрах. Нитяной прибор имеет очень простую конструкцию и очень простой принцип работы, он также способен вычислить расстояние без особых погрешностей. Но электронный дальномер по своей точности всё-таки выигрывает.

Измерение расстояний производится при создании опорных сетей, выполнении топографических съемок и инженерных изысканий, на всех этапах строительства, при эксплуатации зданий и сооружений.

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ РАССТОЯНИЙ

Измерения расстояний подразделяются на прямые и непрямые (например, с помощью дальномеров). Прямые измерения расстояний состоят в откладывании мерного прибора на измеряемых расстояниях и осуществляются с помощью мерных лент, рулеток, раньше с этой целью использовались также мерные проволоки и длинно-меры. Косвенные измерения заключаются в измерении других величин, связанных с измеряемым расстоянием некоторой функциональной зависимостью, и вычислении по ним значения расстояния.

Использовавшиеся ранее мерные инварные проволоки позволяли измерять расстояния с максимальной точностью до 1:1 500 000, но по причине чрезвычайно высокой трудоемкости подобного измерения расстояний в настоящее время они не применяются. Мерные ленты являются стальными, имеют длину 20 или 24 м и могут быть штриховыми и шкаловыми (рис. 6.1).

Рис. 6.1. Мерная лента [а) и шпильки (б)

На концах лент имеются вырезы для шпилек. Метровые деления на лентах оцифрованы, полуметровые деления отмечены заклепками, а дециметровые - отверстиями, сантиметровые деления при измерении линий оцениваются на глаз. Шкаловые ленты на своих концах имеют шкалы с миллиметровыми делениями.

Рулетки могут иметь различную длину (от 2 до 100 м) и могут быть инварными, стальными или тесмяными, использование последних при производстве геодезических измерений не допускается.

Перед измерением линий ленты и рулетки обязательно должны быть прокомпарированы. Компарирование - сравнение длины мерного прибора с эталоном, длина которого известна с высокой точностью. В качестве эталонов используются компараторы или базисы. Компаратор - специальное устройство для сравнения длин мерных приборов. Компараторы могут быть лабораторные (на полу, на бетонных столбах, на полках вдоль стен) и полевые {базисы). На концах компараторов устраиваются шкалы с миллиметровыми делениями. Компарирование мерных приборов сводится к нескольким измерениям длины компаратора. В результате компари-рования должно быть получено уравнение мерного прибора (ленты или рулетки), имеющее вид

где / 0 - номинальная длина прибора ; А/ - поправка мерного прибора за компарирование ; / - фактическая длина прибора. Вычисление поправки мерного прибора за компарирование из нескольких измерений осуществляется по формуле

где О к - фактическое расстояние (длина компаратора); /) ср - среднее значение измеренного расстояния; п - число уложений мерного прибора по длине компаратора.

При компарировании мерных приборов обязательно осуществляется измерение температуры окружающего воздуха; результаты измерения длины компаратора и значения температуры фиксируются в специальном журнале. При отсутствии лабораторных или полевых компараторов компарирование может осуществляться сравнением с компарированным ранее мерным прибором.

Основное назначение строительных дальномеров - определение расстояния до объектов и измерение габаритов больших объектов. Чтобы выбрать подходящую модель, нужно учитывать специфику измерений.

Типы дальномеров

Лазерный дальномер (его также называют лазерной рулеткой) представляет собой компактный прибор с дисплеем и кнопочной панелью. Внутри установлен излучатель, который посылает лазерный луч. Луч направляется на объект, до которого определяют расстояние, на его поверхности появляется точка-маркер. Отраженный луч позволяет прибору считать показатели. Значение полученных измерений выводится на дисплей. С лазерным прибором лучше всего работать в пасмурную погоду или в помещении с неярким освещением - так луч будет хорошо виден. Лазерные дальномеры используются, когда важна высокая точность измерений, так как удается направить точку-маркер именно в то место, до которого требуется определить расстояние. Излучение имеет красный цвет и безопасно для глаз человека, поэтому не требует особой защиты.

Ультразвуковой дальномер похож на лазерный, но вместо видимого луча он посылает короткие ультразвуковые волны. Главным отличием от лазерной рулетки является возможность проводить работы при любом освещении - яркий свет тут не является помехой. Однако прибор не отличается высокой точностью измерений, так как ультразвуковая волна, в отличие от лазерного луча, рассеивается в пространстве, и ее трудно направить в конкретную точку. Использовать ультразвуковые дальномеры можно при определенных условиях: когда на пути к объекту нет препятствий, которые могут поймать ультразвуковую волну до ее попадания к месту измерения. Чем дальше движется волна, тем больше она расходится в стороны. Поэтому важно, чтобы объект был достаточно широким. Чаще всего такие приборы выбирают для бытового применения или частные ремонтные бригады, а главным аргументом при покупке является доступная цена.

Дальность измерения

В зависимости от условий работы выбирают дальномер с определенным диапазоном. Например, если предстоит ремонт или перепланировка помещения, достаточно дальности измерения 40 – 50 м . Для использования на улице, например, на строительной площадке или в парке, необходим прибор, луч которого достигает 100 м и более . Производитель указывает максимальное значение в идеальных условиях - при пасмурной погоде или в сумерки. На практике оно бывает ниже, особенно в солнечную погоду или во время тумана - тогда приходится работать в специальных очках, чтобы можно было рассмотреть лазер, или использовать отражательную пластину как мишень для прицела. Обычно такая необходимость возникает при дальности измерений от 50 м. Чем больше дальность измерения, тем дороже прибор.

Покупая дальномер для работы на улице, необходимо обратить внимание на класс влагозащиты - корпус должен быть герметичным и иметь класс защиты IP54 или IP65 . Следует учесть также диапазон рабочих температур: если планируется работа в холодное время года, выбирают прибор с нижним температурным пределом в -10-20°С.

Стоит также отметить, что у каждого прибора существует минимальное значение вычисляемого расстояния. Оно может составлять от 0,05 до 0,1 м. Этот параметр имеет особое значение, если планируется измерение в ограниченном пространстве, установка маячков, выполнение разметки под ниши, монтаж встраиваемой мебели и так далее.

Точность измерения

Для каждого дальномера указывается допустимый предел погрешности в точности измерения, который может составлять от 1 до 2 мм. Погрешность возрастает с увеличением расстояния либо наоборот на малых дистанциях. Также погрешность увеличивается при наведении лазера на рифленые, бетонные или зеркальные поверхности - точка рассеивается и плохо фиксируется прибором. В этом случае следует воспользоваться отражателем, вместо которого часто вешают на стену лист бумаги.

Количество точек отсчета

Точка отсчета - место, от которого прибор начинает измерять расстояние. У любого дальномера предусмотрено две точки : можно выбрать началом отсчета заднюю или переднюю кромку корпуса. Модели с тремя точками имеют откидную скобу, от которой может производиться измерение при установке в углу или труднодоступном месте, куда не поместится весь корпус. У некоторых моделей этот режим измерения активируется автоматически при откидывании скобы. У дальномеров с четырьмя точками отсчета, кроме измерений от скобы, передней и задней кромки корпуса, точкой отсчета служит резьба в месте крепления на штатив. Это профессиональные модели, которые используются инженерами, геодезистами и другими специалистами.

Элементы питания

Большинство дальномеров работают на батарейках типа ААА. Есть модели, для которых требуется только одна такая батарейка - на одном заряде можно произвести до 3000 измерений. Приборы с двумя элементами питания работают дольше (до 5000 – 6000 измерений). С литий-ионным аккумулятором , которым комплектуются некоторые модели дальномеров, удается выполнить свыше 20 000 измерений.

Функционал

Базовая функция всех дальномеров - разовое измерение. Пользователь наводит лазер, нажимает кнопку, на дисплее выводится результат. Для непрерывных измерений предусмотрен режим сканирования. У многих моделей есть режим измерения в метрах, футах и дюймах. Встроенная память сохраняет от 10 до 50 значений в зависимости от модели устройства.

Вычисление площади и объема заметно упрощает расчеты, например, при определении необходимого количества отделочных материалов (обоев, ламината и других) для конкретного помещения и требуется при выполнении замеров под встроенную мебель.

Сложение и вычитание - к полученному числу можно прибавить следующее значение либо вычесть одно из другого, например, при измерении габаритов в помещении с выступами или подсчете общей площади сразу нескольких помещений.

Теорема Пифагора пригодится для косвенного измерения высоты, когда нет возможности сделать это напрямую из-за каких-либо препятствий или архитектурных особенностей объекта, то есть нет выступов для фиксации лазерной точки. В приборе заложен алгоритм, пользователю надо измерить лишь две величины, например, два катета, чтобы получить гипотенузу, либо, измерив гипотенузу и катет, получить второй катет.

Таймер удобен при использовании дальномера на штативе, когда требуется замер на большой дистанции. Чтобы не нажимать кнопку вручную, что может привести к погрешностям, прибор закрепляется стационарно, выставляется время срабатывания, и показатели выводятся без отклонений.

Калькулятор позволит произвести сложение отрезков на стенах сложных форм, например, с уступами. Это избавит от необходимости записывать полученные значения и складывать их, заметно сэкономит время и поможет избежать ошибок.

Определение угла выполняется по трем сторонам треугольника. Функция пригодится при определении отклонений угла от 90°, а также при вычислении угла ската крыши.

Автоматическое отключение поможет сэкономить заряд батареи. Если прибор неактивен некоторое время, он выключается.

Дополнительные опции

Многие дальномеры имеют крепление для штатива , чтобы устройство можно было устойчиво закрепить для более точных измерений. Для инженерных и строительных измерений, требующих высокой точности, необходима модель с пузырьковым уровнем на корпусе. С его помощью удастся максимально ровно установить устройство на штативе. Для работ на улице при измерении больших расстояний лучше выбирать дальномер с визиром. Он имеет встроенный зум, который позволяет рассмотреть объект, находящийся на большой дистанции. Например, если объект расположен в 100 м от места измерений, невооруженным глазом не увидишь, в какое место направлена точка-маркер. С помощью этого приспособления удастся безошибочно определить, до того ли объекта проводятся измерения, не столкнулся ли луч с препятствием. Цифровой зум выводит картинку на дисплей, оптический - позволяет рассмотреть объект через встроенную оптику. Для удобства переноски многие дальномеры поставляются в комплекте с чехлом, который можно крепить на ремне - прибор будет под рукой в нужный момент.

Для профессиональных строительных моделей предусмотрена возможность переноса измерений на фотографии и чертежи. Некоторые дальномеры оснащены модулем Bluetooth для передачи данных на мобильные устройства и компьютеры. Мгновенная передача данных на ПК или мобильный телефон экономит до 80% времени по сравнению с ручным вводом. Кроме того, исключаются ошибки, которые могут возникать при невнимательной записи результатов. Для работы нужно лишь установить программу, которую предлагает производитель.

Справочная статья, основанная на экспертном мнении автора.

Ответы

Измерение линий на местности - один из самых распространен­ных видов геодезических измерений. Без измерения линий не об­ходится ни одна геодезическая работа. Линии измеряют на горизон­тальной, наклонной и вертикальной плоскости. Их производят не­посредственно - металлическими, деревянными метрами, рулетка­ми, землемерными лентами и специальными проволоками, а также косвенно - электронными, нитяными и другими дальномерами.

Метры, из-за простоты их конструкции, описывать нет необ­ходимости, однако следует подчеркнуть, что при использовании складных метров необходимо прежде всего проверить наличие всех звеньев.

Рулетки (рис. 1) выпускают стальные и тесемочные длиной 1, 2, 5, 10, 20, 30, 50 и 100 м, шириной 10...12мм, толщиной 0,15...0,30 мм. На полотне рулетки наносят штрихи - деления через 1 мм по всей длине или только на первом дециметре. В последнем случае всё остальное полотно размечают сантиметровыми штрихами. Цифры подписывают у каждого дециметрового деления. Чтобы измерить расстояние между двумя точками штрих с подписью 0 (ноль) прикладывают к одной точке и смотрят, какой штрих совпадает со второй точкой. Если вторая точка не совмещается со штрихом на рулетке, а попадает между ними, то расстояние между штрихами визуально делят на 10 частей и на глаз оценивают отстояние ее от ближайшего штриха. У рулеток с сантиметровыми делениями (рис. 1, б ) отсчет берут до 0,1 деления, или до 1мм, у рулеток с миллиметровыми делениями (рис. 1, а) - до 0,1 мм. Цифры у метровых делений даны с размерностью метров - буквой м . Стальные рулетки выпускают либо с полотном, намотанным на крестовину (вилку) (рис. 1, г ), либо в футляре (рис. 1,). Для измерений коротких отрезков металлические рулетки делают изогнутыми по ширине - желобковыми (рис. 1, д).

Рис. 1. Стальные рулетки:

а, 6 - виды делении, в - карманная, автоматически сматывающаяся г - на вилке, д - в футляре; 1 - футляр, 2 - полотно, 3 - Г-образные окончания для фиксации, 4,5 - ручки, 6 - кольцо, 7 - желобковый вид сечения.

Длинномерные рулетки типа РК (на крестовине) и РВ (на вилке) применяют в комплекте с приборами для натяжения - динамомет­рами. Как правило, пружинными динамометрами обеспечивают натяжение рулеткам до 100 Н (стандартное натяжение, равное уси­лию 10 кг). Тесемочные рулетки состоят из плотного полотна с металлическими, обычно медными, прожилками. Полотно тесе­мочной рулетки покрыто краской и имеет деления через 1 см. Тесемочными рулетками пользуются, когда не требуется высокая точность измерений. Тесемочные рулетки свертывают в пластмас­совый корпус.

Землемерная лента ЛЗ (рис. 2) представляет собой стальную полосу длиной 20, 24, 30 и 50 м, шириной 1...15 мм и толщиной 0,5 мм . На концах ленты нанесено по одному штриху 7, между которы­ми и считается длина ленты. У штрихов сделаны вырезы 2, в кото­рые вставляют шпильки, фиксируя длины измеряемых отрезков. Оканчивается лента ручками. На каждой плоскости ленты отмечены деления через 1, 0,5 и 0,1 м. Для исключения просчетов при измерении



Рис. 2. Землемерная лента:

а - при измерении, б - на станке; 1 - штрих, 2 - вырез, 3 - заклепка, 4 - пластина, 5 - отверстие, 6 - линия, до которой выполнено измерение, 7 - ручка

линий короче номинальной длины ленты, подписи метровых делений на одной плоскости возрастают от одного конца ленты, а на другой плоскости от противоположного конца. Метры на ленте отмечены медными пластинами 4, полуметровые деления - за­клепками 3, дециметровые - отверстиями 5. Более мелких делений не делают. Длину отсчитывают с точностью до сотых долей метра делением дециметровых частей между отверстиями “на глаз”. На приведенном рисунке отсчет от начального штриха до вертикальной полосы равен 13 м и 14 см.

Землемерная шкаловая лента ЗЛШ (рис. 3) отличается от опи­санной выше наличием на ее концах шкал с миллиметровыми делениями. Длины отрезков на концах ленты с миллиметровыми делениями равны 10 см. Номинальной длиной ленты является рас­стояние между нулевыми штрихами шкал.


Рис. 3. Землемерная шкаловая лента

В комплекты ЛЗ и ЗЛШ входят наборы (от 6 до 11 штук шпилек) - металлических стержней с заостренными концами и кольцами-ручками (рис. 4). Для переноски шпильки надевают на проволочное кольцо.

Для транспортировки и хранения ленты наматывают на метал­лическое кольцо - станок.

Рис. 4. Набор шпилек

Для некоторых видов точных измерений применяют специаль­ныеинварные проволоки. Инвар обладает малым коэффициентом линейного расширения в зависимости от температуры, повышенной твердостью и упругостью. На концах проволоки закреплены специ­альные шкалы-линейки с наименьшими делениями 1 мм. На оста­льной части проволоки маркировки длины нет. Поэтому проволо­ками измеряют расстояния, равные длине между штрихами (24 м). Расстояния, не кратные 24 м, измеряют инварными рулетками.

В практике применяют ряд других приборов и инструментов для непосредственного измерения линий. К ним относят длинномеры (измерения аналогичны измерениям проволоками); нутромеры - концевые меры со сферическими окончаниями для измерения и кон­троля расстояний контактным способом; катетометры - специаль­ные приборы для измерения небольших (до 1 м) вертикальных отрезков с очень большой точностью (0,006...0,050 мм ); измеритель­ные микроскопы , а также шаблоны и другие приспособления, часть из которых будет рассмотрена при изучении геодезического обес­печения строительно-монтажных работ.

Компарирование. До начала работы мерные приборы сравнива­ют с эталонами - компарируют. За эталоны принимают отрезки линий на местности или в лаборатории, длины которых известны с высокой точностью. Длина l -мерного прибора ленты или рулетки выражается уравнением, которое в об­щем виде можно записать так:

l=l о +Δl k +Δl t

где l о - номинальная длина ленты при нормальной температуре (+20 °С),

Δl k - поправка компарирования, Δl t - поправка из-за темпера­туры.

Уравнение мерного прибора может иметь, например, такой вид

L 30 =30+3,8 при t= +20°С,

что означает: мерный прибор длиной 30 м при температуре +20 °С имеет поправку к конечному штриху +3,8 мм.

Чтобы вычислить номинальную длину мерного прибора для каждого температурного режима эксплуатации поступают таким образом. Сначала определяют величину поправки из-за температу­ры. Известно, что коэффициент линейного расширения стали при изменении температуры на 1° равен α = 12,5 · 10 -6 .

Пусть требуется узнать полную поправку при температуре эксп­луатации - 6 °С. Тогда для мерного прибора 30 м длины поправка будет Δl t ,= α(t - t o)·30м =12,5·10 -6 ·(-6°-20°)·30 м = -9,8 мм , а общая длина ленты будет l 30 =30 +3,8 - 9,8 =29,994 .

В производственных условиях мерные приборы чаще всего эта­лонируют на полевых компараторах. Эти компараторы представля­ют собой выровненные участки местности преимущественно с твер­дым покрытием. Концы компаратора закрепляют знаками со специ­альными метками, расстояние между которыми известно с большой точностью.

Компарирование длинномерных рулеток и лент в полевых усло­виях производят на компараторах, длина которых, как правило, близка к l = 120 м . Такую длину выбирают для того, чтобы уложить мерный прибор на компараторе несколько раз. Уложение мерных приборов ведут в прямом и обратном направлениях. Подсчитыва­ют число целых и дробных уложений рулетки или ленты и определя­ют поправку за компарирование. Ее вычисляют по формуле

где п - число уложений мерного прибора, l Σ - измеренная длина компаратора.

Рассмотрим процесс эталонирования, если длина мерного при­бора, например рулетки, примерно равна длине компаратора. Ру­летку разматывают и укладывают вдоль компаратора. С помощью динамометра рулетке придают натяжение 100 Н и наблюдатели подводят штрихи рулетки к меткам знаков. Руководитель работы измеряет температуру воздуха, и по его команде наблюдатели берут одновременно отсчеты по шкале рулетки: у переднего конца (П) и заднего (3). Руководитель эталонирования записывает резуль­таты в специальный журнал (табл. 1). Таких отсчетов делают несколько, сдвигая между каждой парой отсчетов рулетку по створу измерений на 2 - 3 см.

Разности пар отсчетов не должны различаться более чем на 2 мм . Если разность больше, делают повторные измерения. Тем­пературу воздуха измеряют с точностью до 1 °С.

Таблица 1

Дата ________

Наблюдатели: ________ Начало измерений _____

Руководитель: ________ Конец измерений ______

Поправка в длину рулетки за температуру, при которой произ­водится эталонирование, Δl t = 12,5·10 -6 ·(10 o -20 o)·30м = -3,8 мм . Следовательно, длина отрезка эталонируемой рулетки l =29953,2 - 3,8 мм =29949,8 мм.

Длина компаратора в рассматриваемом примере B 0 =29954 мм. Тогда поправка в длину рулетки при t= +20 °С и натяжении 100 Н Δl t =l – B 0 =29948,8 мм -29954 мм= = -5,2 мм.

Для предварительного компарирования или при желании знать фактическую длину вновь вводимого в эксплуатацию мерного при­бора со сравнительно небольшой точностью поступают так. Нор­мальный мерный прибор (нормальным считается прибор, прошед­ший компарирование) и испытываемый укладывают на одну и ту же плоскость. Совмещают начальные штрихи, обе рулетки натягивают с одинаковой силой и миллиметровой линейкой измеряют расстоя­ния между конечными штрихами. Измеренную величину считают поправкой вводимого в эксплуатацию мерного прибора по отноше­нию к нормальному.

Определение поправки в длину испытываемой рулетки произ­водят после приведения длины нормальной и испытываемой рулет­ки к одной и той же температуре.

На строительно-монтажной площадке часто приходится откла­дывать меньшую длину, чем длина рулетки. В этом случае проверя­ют длины метровых, дециметровых делений и более мелких. Ком­парирование мелких делений выполняют контрольной (например Женевской) линейкой, где минимальные отрезки нанесены через 0,2 мм. Показания считывают через увеличительные стеклаили микро­скопы.







2024 © sdelano-krasnodar.ru.