Как называются большие круглые батарейки. Виды пальчиковых батареек по размерам


В большинстве случаев рядовой покупатель при выборе батарейки обращает внимание только на ее типоразмер и название фирмы-производителя. И совершенно напрасно.

Виды батареек

Главным достоинством солевых батареек , выделяющим их среди всех остальных видов источников питания, является их дешевизна. В качестве электролита используется раствор хлорида аммония.

Каждый из электродов размещен в отдельном электролите, соединенным с другими электролитами посредством солевого моста.

К недостаткам солевых источников питания относятся небольшой (до 24 месяцев) срок хранения, потеря батареей 40% своей емкости к концу периода хранения и практически полное падение емкости при минусовой температуре окружающего воздуха.

Щелочные (алкалайновые) батарейки получили свое название благодаря химическому составу электролита, состоящего из гидроксида калия. Электроды алкалайновых источников питания изготовлены из двуокиси марганца и цинка.

Щелочные батарейки имеют высокую герметичность корпуса и малочувствительны к низким температурам. Их гарантийный срок хранения достигает 5 лет, причем потеря емкости в первый год хранения составляет не более 10%.

Из недостатков щелочных батарей можно выделить спадающую кривую разряда, более высокие стоимость и вес, чем у солевых элементов питания. Щелочные батарейки можно однозначно идентифицировать по надписи ALKALINE на их корпусе.

Литиевые батарейки состоят из литиевого катода, отделенного от анода сепаратором и диафрагмой с органическим электролитом.

Важное свойство литиевых источников питания – низкая зависимость их емкости от тока нагрузки, благодаря чему они являются самыми «выносливыми» среди всех остальных видов батареек.

Срок хранения таких источников питания достигает 15 лет, причем за все это время батарея почти не теряет емкость. Еще одно преимущество литиевых батареек – возможность полноценной эксплуатации при низких температурах окружающей среды.

Единственный их минус – высокая стоимость, они дороже щелочных батарей в 4-5 раз. Литиевые батарейки можно легко отличить от других по нанесенной на их корпусе надписи LITHIUM.

У ртутных батареек катод изготовлен из оксида ртути, анод — из цинка, в качестве электролита используется раствор щелочи. Ртутные элементы питания имеют высокие емкость и энергоплотность, отличаются длительным (до 10 лет) сроком хранения, устойчивы к перепадам температур.

К недостаткам ртутных батареек можно отнести их высокую стоимость и проблематичность утилизации использованных элементов питания.

По своим техническим и эксплуатационным характеристикам к ртутным источникам питания очень близки серебряные батарейки с цинковым анодом, катодом из окиси и щелочным электролитом.

Они обладают высокой энергоемкостью и постоянством напряжения, хранятся до 10 лет, устойчивы к высоким и низким температурам окружающего воздуха.

Серебряные батареи имеют высокую стоимость, однако, в отличие от ртутных источников питания, обладают большей удельной емкостью и не несут угрозы здоровью в случае их разгерметизации.

Типоразмеры батареек

Наиболее распространенной системой классификации размеров батареек является американская буквенная система, в которой в зависимости от формы и размеров источников питания им присвоено определенное буквенно-цифровое обозначение.

Маркировка батареек

Тонкости выбора элементов питания

Использовать солевые батарейки в качестве источника питания целесообразно для устройств, потребляющих небольшой (до 10 мА) ток.

Пульты дистанционного управления, настенные и настольных часы, электронных весы и термометры, тестеры – вот неполный перечень таких потребителей.

Для устройств с умеренным и высоким энергопотреблением (от 10 до 200 мА) рекомендуется использовать щелочные батарейки.

К таким устройствам относятся радиоприемники, аудиоплейеры, цифровые фотоаппараты, и детские игрушки, оснащенные электрическими двигателями.

Щелочные источники питания можно вставлять в устройства с низким потреблением энергии, к примеру, в настенные часы или пульт ДУ. Тогда время до следующей замены батареек, в сравнении с соляными, увеличится в несколько раз.

Литиевые батарейки могут служить источником тока практически для любых электронных устройств.

Вопрос лишь в том, насколько экономически целесообразно использовать дорогостоящую литиевую батарею в электронном термометре с ничтожным током потребления?

Использование литиевых батареек оправдано для электроники и цифровых устройств с высоким энергопотреблением.

Серебряные батарейки востребованы в качестве миниатюрных источников питания в материнских платах компьютеров и ноутбуков, калькуляторах, наручных часах и прочих электронных устройствах. Причиной тому — высокая стоимость серебра.

Ртутные батарейки в настоящее время практически не используются, хотя еще лет двадцать назад были незаменимы в устройствах связи, военной технике, авиационных и медицинских приборах.

Удачного вам выбора! Пусть выбранные батарейки служат надежным источником питания для вашей техники!

Определение внутреннего омического сопротивления (постоянному току) у батарейки или аккумулятора

Существует множество методик и практических способов, чтобы определить внутреннее сопротивление источников питания, на постоянном или на переменном токе. В данной статье рассмотрены несложные приёмы измерений и расчётов, когда из всей аппаратуры в наличии имеется только простейший китайский тестер.

По описанным в руководствах методикам, производятся измерения и вычисления, результаты которых записываются с точностью до второго знака после запятой. Искомый параметр зависит от типа и величины нагрузки, текущей температуры и состава электролита, степени разряда батарейки и заряженности аккумулятора, и от множества других факторов. Поэтому, всегда будет присутствовать определённая, большая или маленькая, ошибка измерений.

Формула для упрощённого расчёта внутреннего электрического сопротивления:

Rвн = (R * (Е – U)) / U

Е – напряжение без нагрузки. ЭДС покоя – примерно равняется напряжению Е (при высоком входном сопротивлении присоединённого вольтметра), когда химический источник электропитания находился без нагрузки достаточно длительное время (более 2-3 часов).

U – кратковременно (не более 10 секунд), под нагрузкой (2-12 Ом),
с номинальной мощностью рассеяния - не менее 2 Вт. Лампочка для этого не годится , т.к. при нагревании спирали накала, её электросопротивление значительно меняется, существенно увеличивается. Для этих целей хорошо подходит толстая нихромовая ( – в несколько десятков раз меньше, чем у стали, меди и вольфрама) проволока от старой открытой электроплиты, откалиброванная отдельными отрезками по нужным номиналам R и закреплённая на негорючем диэлектрическом основании.

Формула для более точных измерений с двумя различными резисторами (обеспечивающими приблизительно, 20-30 и 70 процентов от допустимого, например, 3 и 9 Ом), то есть, только под нагрузкой:

Rвн = (R1 * R2 *(U2 – U1)) / (U1*R2 – U2*R1)

При измерениях электрического тока (на верхнем, амперном пределе), с использованием обычных китайских мультиметров – возможна существенная систематическая ошибка из-за внутреннего сопротивления самого прибора. Поэтому, стандартные формулы со значением тока в уравнении – обеспечат максимально точный результат, только когда применяются с промышленной, специальной аппаратурой, при строгом соблюдении правил и методик лабораторных измерений по ГОСТ (заданные интервалы времени, порядок и последовательность стендовых испытаний). По результатам измерений с двумя резисторами, вычисляется дельта (разница) напряжений и токов:

Rвн = dU/dI

На практике, применяют и упрощённый способ с одним резистором, где дельта считается от напряжения без нагрузки (как в первом варианте), а ток вычисляется по закону Ома. Как первая формула:

Rвн = (Е – U) / (U/R) =

Или вариант с реальным измерением тока: (Е – U) / I

Так же, зная ток при двух различных нагрузках, математически рассчитывается ток короткого замыкания (теоретически возможный) – по формуле из задачи с уравнениями для школьного курса физики старших классов. Данная формула не учитывает всех химических процессов в элементах электропитания, на предельных нагрузках, и конструктивных особенностей. Поэтому, вычисленное значение будет отличаться от фактически возможного:

Iкз = (I1*I2*(R2 – R1)) / (I2*R2 – I1R1) при R1 < R2

При непосредственном измерении Iкз ("коротыша") тестером, тоже, получатся заниженные показатели – из-за внутреннего сопротивления самого прибора.

// Быстрый и объективный способ проверки работоспособности – стрелочным тестером, имеющим автоматическую защиту от перегрузки, тестируется аккумулятор или обычная батарейка на "ток короткого замыкания", включая на 2-3 секунды. Должно быть - не меньше 2 ампер. Норма – если будет больше 3 А. Метод суровый, но объективный. При таком тестировании – сразу видно "переходную характеристику" во время разряда (по стрелочному индикатору тестера), насколько хорошо аккумулятор держит большую нагрузку. Цифровые показатели – максимальный ток (для вычислений, в качестве Iкз - это не годится, т.к общее сопротивление цепи - ненулевое) и скорость спада. Чтобы не испортить, какой-нибудь, особо ценный элемент питания, в цепь последовательно подключается достаточно мощное нагрузочное сопротивление, до нескольких сотен миллиом.

Если электросопротивление самодельной низкоомной нагрузки измеряется цифровым тестером, на малом пределе (200), то нужно учитывать внутреннее сопротивление самого мультиметра, проводов и контактов. Цифры на табло, при замкнутых накоротко щупах прибора, могут иметь значения, например – 00.3 или 004 Ом, то есть – 300 или 400 миллиом, соответственно, которые нужно будет вычитать. Это уменьшит ошибку измерений, но в конечном результате - останется ещё внутренняя погрешность тестера (указывается в тех.паспорте устройства). Поэтому, низкоомные резисторы – лучше мерить по схеме резистивного делителя, на основе точного измерения падения напряжения (в приборе наивысшая точность – именно для DCV) на участке последовательной цепи с эталонным прецизионным резистором (образцовое высокоточное постоянное электросопротивление с точностью 0.05-1%, имеющее на корпусе серую полоску цветной маркировки). Из пропорции Rx/Rэталон=Ux/Uэталон считается искомое электрическое сопротивление Rx.

// Узнать внутреннее сопротивление любого мультометра, включённого в режиме омметра, можно с помощью низкоомного прецизионного резистора. Померенное значение R будет отличаться от номинала на искомую величину.

Примерные величины внутреннего электро-сопротивления (току) для исправных-свежих источников питания повышенной ёмкости, при нормальной температуре:
- литиевый элемент (типоразмер АА) – < 200 мОм (миллиом).
- щелочная батарейка (размер АА) – до 200 мОм.
- никель-металл-гидридные аккумуляторы (АА, NiMH) – до 150 мОм.
- заряженный свинцовый акк. – первые десятки мОм.
- Li-ion, Li-po аккумулятор – от единиц до первых десятков миллиом.
- LiFePO4 литий-железо-фосфатный акк. – единицы миллиом.
- Li4Ti5O12 литий-титанат. акк. – до 1 мОм

Каждый человек хотя бы раз в жизни сталкивался с вопросом замены батарейки. В часах, в калькуляторе, фотоаппарате, фонарике, детской игрушке, и мало ли в чем еще. Чем же обычно руководствуетесь вы как потребитель, подбирая батарейку для замены. Первое, естественно, подбираете источник тока подходящего размера и требуемой мощности.

С этим легко определиться, внимательно изучив использованную батарейку. Идете покупать, а именно такой нет. Продавец предложит вам сразу несколько вариантов, но выбор за вами. Чаще всего этот выбор формируется на соотношении срок службы/цена. Иногда возникает вопрос выбора между батарейками и аккумуляторами, редко кто подбирает батарейки под температурные условия и всерьез задумывается над всеми электрическими характеристиками источника. Так или иначе, в быту чаще всего мы имеем дело с "пальчиковыми" батарейками.

В основе любого источника тока, а батарейка не что иное, как источник тока, лежит простая схема: анод-катод, а между ними электролит. За счет различной природы материала анода и катода, при их погружении в электролит возникает разность потенциалов - напряжение, из-за чего и возникает электрический ток. Химические источники тока носят свое название из-за природы возникновения тока: химическая энергия активных веществ непосредственно превращается в электрическую энергию. Они делятся на две группы - первичные и вторичные. В первичных источниках тока (батарейках) процесс протекает необратимо. К вторичным источникам тока относят аккумуляторы, их можно заряжать, после того как они себя исчерпают. В различных литературных источниках встречается информация о том, что батарейки тоже можно перезаряжать. Не пытайтесь это делать во избежание взрыва и разбрызгивания химических веществ.

Форма и размер.

"Пальчиковая форма" батареек выбрана не случайно. При одинаковой емкости высокий и узкий цилиндр - пальчик - имеет меньшее внутреннее сопротивление и лучше рассеивает тепло. Требования Международной электрической комиссии относительно унификации размеров источников тока позволяют заменять батарейки одного производителя на батарейки другого, тем самым, создавая возможности для вольного потребительского выбора. На батарейке можно увидеть сразу несколько обозначений ее размеров. По российскому законодательству цилиндрические батарейки в зависимости от диаметра и высоты обозначают от R06 до R27, американские нормы диктуют буквенную маркировку. Для бытовой техники могут быть нанесены дополнительные надписи. Например, наиболее распространенная "пальчиковая" батарейка R6 имеет диаметр 14,5 мм и высоту 50,5 мм, она же имеет обозначение АА и MIGNON.

Батарейка (первичный элемент питания) - один из самых распространенных источников питания для мелкой техники и электроники.

Что находится внутри батарейки?

Батарейки зачастую малы, но довольно сложно устроены. Это высокотехнологичные элементы, в которых в результате химических реакций выделяется электрическая энергия. Данный процесс происходит между тремя главными элементами батарейки: анодом, катодом и электролитом. В зависимости от типа батарейки для перечисленных элементов используются различные материалы. Материал выбирается по принципу максимизации эффекта при их взаимодействии. Анод часто делают из металла, катод — из оксида различных металлов. В качестве электролита используется соль, в щелочных батарейках — двуокись марганца.

То, что внутри батарейки, иными словами ее электрохимическая система - стартовые условия. Первыми химическими источниками тока были гальванические элементы с металлическими электродами, погруженными в водный электролит. Что-то похожее показывают на уроках химии в школе, когда электроды опускают в раствор и при этом загорается лампочка.

Батарейки имеют различное напряжение и ёмкость.

Различные устройства работают с различным напряжением, поэтому и у батареек оно должно быть разным. Кроме того, напряжения разных типов батареек зависит от используемого электролита. К примеру, литиевые батарейки имеют номинальное напряжение 3 V, щелочные — 1,5 V. Ёмкость батареек рассчитывается из объёма активных элементов, помещаемых в корпус батарейки. Однако расчитанная подобным образом ёмкость не может быть использована для определения работоспособности батареек и имеет название «расчетная ёмкость».

Фактическая же ёмкость зависит от множества факторов:

Уровень зарядки;
. режим использования;
. температура окружающей среды;
. ток отсечки (Напряжение, при котором устройство не работает даже при сохранённом заряде батарейки. Например, батарейка, которая уже не работает в фотоаппарате, зачастую продолжает работать в часах или пультах управления).

Каждая ячейка электрической батарейки вырабатывает токк 1.5 вольта, что немного по сравнению с 220-вольтовым напряжением в бытовой" электросети. Поэтому батарейки не опасны для потребителя. Любая батарейка, напряжение которой превышает 1,5 вольта (например, 6 вольт) - это, в сущности, комплект соединенных последовательно батареек по 1,5 вольта. Исключением являются перезаряжаемые никелево-кадмиевые батарейки, напряжение которых в заряженном состоянии только 1,2 вольта.

Электрический заряд батареек. Количество электричества в батарейках измеряется в ампер - или миллиампер-часах. Если к примеру, заряд батарейки равен 1,0 ампер-часу, а электрический прибор, в котором она работает, требует тока в 200 миллиампер (т.е. в 0,2 ампера), срок действия батарейки вычисляется по следующей формуле:

в приведенном при мере этот срок составит пять часов (1,0: 0,2 = 5).

Саморазряд - это следствие нерабочего состояния батарейки, который ведет к потере емкости. Режим хранения может возникать по двум причинам. Во-первых, это касается новой продукции с момента выпуска и до начала использования. Во-вторых, если использовать ресурс батарейки с достаточно длинными промежутками-перерывами.

Причина саморазряда кроется в самой батарейке - неустойчивости электродов, загрязнении электролита. Обычно за нормированный срок хранения батарейка теряет порядка 30% своей начальной емкости. Наиболее сильно разряжается батарейка в начале хранения. Также саморазряд возрастает при повышении температуры.

Типы батареек:

Достоинства

Недостатки

Сухие («солевые», LeClanche, угольно-цинковые)

Самый дешёвый, массово производится.

Наименьшая ёмкость; плох в работе с мощными нагрузками (большим током); плох при низких температурах.

Heavy Duty («мощный» сухой элемент, хлорид цинка)

Менее дорогой, чем щелочной. Лучше LeClanche при высоком токе и низких температурах.

Низкая ёмкость.

Щелочные («алкалиновые», щелочно-марганцевые)

Средняя стоимость. Лучше предыдущих при большом токе и низких температурах. При разряде сохраняет низкое значение полного сопротивления. Широко выпускается.

Спадающая кривая разряда.

Постоянство напряжения, высокая энергоемкость и энергоплотность.

Высокая цена. Из-за вредности ртути уже почти не производятся.

Серебряные

Высокая ёмкость. Плоская кривая разряда. Хорош при высоких и низких температурах. Превосходная длительность хранения.

Литиевые

Наивысшая ёмкость на единицу массы. Плоская кривая разряда. Превосходен при низких и высоких температурах. Чрезвычайно длительное время хранения. Высокое напряжение на элемент (3В). Лёгкий.

Описание

Достоинства

Недостатки

Первичные

Гальванические элементы. Реакции, происходящие в них, необратимы, поэтому их нельзя перезарядить. Обычно именно их и называют словом «батарейка». Попытка зарядить батарейку может привести к порче батарейки и утечке щелочи или других веществ находящихся в батарейке.

Выше ёмкость и/или дешевле.

Одноразовость применения.

Вторичные

Аккумуляторы. В отличие от первичных, реакции в них обратимы, поэтому они способны преобразовывать электрическую энергию в химическую, накапливая её (заряд), и выполнять обратное преобразование, отдавая электрическую энергию потребителю (разряд). Для распространённых аккумуляторов число циклов заряд-разряд обычно равно примерно 1000 и заметно зависит от условий эксплуатации.

Многократность применения, перезаряжаемые.

Ниже ёмкость и/или дороже.

Что такое щелочная батарейка?

Около 40 лет назад компания Duracell первой разработала щелочную химическую систему с использованием двуокиси марганца. В 1960-1970-ые годы данные батарейки стали очень популярны среди разработчиков электронных устройств. Щелочные батарейки имеют множество преимуществ перед солевыми: большая емкость, более широкий температурный режим, меньшая вероятность протечки, дольший срок хранения. Все это позволило им завоевать популярность во всем мире.

Надпись на батарейке "Alkaline" свидетельствует о том, что это щелочная батарейка. Они хранятся дольше солевых элементов. Название они получили по природе электролита: обычно используют КОН, истинную щелочь. При непрерывном разряде щелочные батарейки обеспечивают большую (в 7-10 раз) емкость по сравнению с аналогичными солевыми элементами. Они лучше работают при низких температурах, но приблизительно на 30% тяжелее. Скорость саморазряда ниже, после года хранения при комнатной температуре потери емкости не превышают 10%. Однако все эти преимущества накладывают отпечаток на цену продукции.

Что такое литиевая батарейка?

Хим.состав - литий-диоксид марганца.

Последние несколько деситилетий технический прогресс привёл к увеличению разнообразия и миниатюризации устройств, работающих от батареек. Для многих из этих устройств потребовались более мощные элементы питания, при этом достаточно компактные. Литиевые батарейки стали ответом на такую потребность. Литиевые батарейки демонстрируют великолепные результаты и обладают целым рядом положительных характеристик: долгий срок хранения, высокая надёжность и отличная работоспособность в широком диапазоне температур.

Аккумуляторные элементы питания.

Особый вариант представляют собой никелево-кадмиевые батарейки (вторичный элемент питания), которые можно многократно перезаряжать.

Аккумуляторная батарея - автономный источник тока, работает сам по себе без помощи генератора. Он преобразовывает один вид энергии в другой. Она из химической энергии получает электрическую.

Аккумулятор - очень удобный источник постоянного тока, так как она компактна и легко переносима. Благодаря этому, сфера применения этих батарей очень широка. Аккумуляторные батареи используются в автомобилях, электропоездах, электропогрузчиках, в компьютерах, радиотелефонах, сотовых телефонах, фотоаппаратах, видеокамерах, ноутбуках, калькуляторах.

Основными характеристиками аккумулятора являются емкость и предельная сила тока. Чтобы получить более высокое напряжение (до нескольких сот вольт), нужное число элементов соединяют последовательно. Емкость батареи электропитания в ампер-часах равна произведению предельного тока на продолжительность разрядки. Например, если батарея может давать ток силой 3 А в течение 20 ч, то ее емкость равна 60 АЧч.

Никелево-кадмиевые батарейки можно многократно перезаряжать, и это - их главное преимущество перед другими батарейками. Их недостаток - невысокое напряжение - 1,2 вольта.

Саморазрядка у этих батареек - если они не присоединены к зарядному устройству - составляет около 30% в месяц. Это значит, что если они долго лежали, ими нельзя пользоваться без подзарядки. Величина заряда у никелево-кадмиевых батареек приблизительно соответствует величине заряда батареек группы С, а стоят они дороже.Но расходы на приобретение этих батареек и зарядного устройства окупаются достаточно быстро, если батарейки используются в приборах, потребляющих высокочастотный ток небольшой силы.

Во всякой аккумуляторной батареи есть положительный и отрицательный электроды, а также электролит, в котором эти электроды находятся. Бывают электролиты жидкие и пастообразные. Батареи заряжаются путем пропускания тока в противоположном направлении. В этом случае емкость восстанавливается благодаря обратной химической реакции.

Аккумуляторные батареи бывают свинцовыми, железно-никиелевыми, никель-кадмиевыми. Это зависит от материала из которого делаются электроды. Также есть высокотемпературные и топливные аккумулятор.

Миниатюрные элементы питания (батарейки - таблетки).

В обиходе имеют несколько названий - (дисковые, кнопочные, пуговичные). Предназначены для эксплуатации в часах, калькуляторах, видео- и фотоаппаратуре, в портативных электронных устройствах. Современные тенденции развития электронных технологий предполагают минимизацию габаритов и увеличение времени автономной работы электронной аппаратуры, что в свою очередь расширяет сферу применения данных батареек — компьютерная техника, медицина, телекоммуникации.

Диапазон использования широкий - от простейших пультов управления автомобильной сигнализацией до высокотехнологичных смартфонов и персональных электронных помощников.

Наиболее распространенные типы дисковых батареек: марганцево-цинковые, серебрянно-оксидные (серебрянно-цинковые), литиевые.

1. Марганцево-цинковые ЭП (Alkaline)

Применяются в калькуляторах, электронных часах, фотооборудовании, карманных фонарях. По техническим характеристикам (начальное напряжение и номинальная емкость) уступают серебрянно-оксидным, но имеют одно неоспоримое преимущество перед ними — низкую стоимость. Срок хранения — до 2 лет.

2. Серебряно-оксидные дисковые ЭП

Широко применяются в кварцевых электронных часах, калькуляторах, слуховых аппаратах, медицинской аппаратуре, электронных игрушках, сенсорных зажигалках. Представлены широким ассортиментом типо-размеров и обладают высокими энергетическими характеристиками. Характеризуются стабильным и постоянным разрядным напряжением до конца разряда. Гарантийный срок хранения — до 3 лет.

3. Литиевые дисковые ЭП

Применяются в многофункциональных наручных часах, домашних метеостанциях, авто-сигнализациях, электронных базах данных, измерительной аппаратуре, высокотехнологичных системах. Литиевые источники характеризуются высокими плотностями энергии и работоспособны в широком диапазоне температур (от —20°С до +55°С), поскольку не содержат воды. Они герметичны и имеют довольно стабильное напряжение. Батарейки этой электрохимической системы обладают исключительно малым саморазрядом (сохраняют более 85% емкости после 10 лет хранения). В микромощных устройствах, где важна надежность контактов, используют литиевые источники с выводами под пайку (горизонтальные и вертикальные). Гарантийный срок хранения - до 10 лет.

Как заставить работать батарейку дольше?

Знаете ли вы, что обычную батарейку, пальчиковую, например "AA", можно использовать и после того, как она впервые "села"? Да, она "села", но есть у неё ресурс, который можно использовать. Особенно это касается батареек на всяких пультах. Не спешите выбрасывать батарейку!!!

Просто выньте её и сделайте несколько вмятин на батарейке (плоскогубцами или ещё чем-нибудь, только не зубами). Главное не согните её, чтобы она обратно могла влезть на своё место в пульте. Вставляйте И пользуйтесь.

Многие знают секрет, что "севшую" батарейку можно ненадолго привести в "чувство", постучав ею о твердую поверхность. При этом гранулы диоксида марганца раскалываются контакт восстанавливается. А есть еще более варварский способ - пробить корпус батарейки гвоздем и погрузить корпус (не полностью) ненадолго в воду. В результате вода несколько разбавит электролит, и ему будет проще проникнуть к гранулам марганца.

ВНИМАНИЕ! НЕ ПРОБУЙТЕ ДЕЛАТЬ ЭТО С ПЕРЕЗАРЯЖАЮЩИМИСЯ БАТАРЕЙКАМИ!!!

Как правильно выбирать батарейки?

Театр, как известно, начинается с вешалки. Качество батарейки начинается с ее упаковки.

Батарейки типоразмеров R20 (LR20), R14 (LR14), R6 (LR6), RОЗ (LR03), R1 (LR1) и 6F22 (6LF22, 6LR61) в блистерной упаковке, как правило, отличаются высоким качеством в своей подгруппе.

Блистер - это прозрачная пластмассовая коробочка, в которой лежит от одной до четырех батареек. Коробочка приклеена к цветной картонной открытке, на которой (фото 1) мы видим: название фирмы с символом ее регистрации (DURACELL R, EVEREADY), самую важную, по мнению фирмы, информацию (EXTRA POWER, Nothing lasts longer; Heavy Duty), обозначение типоразмера по разным стандартам (С, А-343, LR14, LR20, D) и обязательно срок годности (INSTALL BY JAN 2000; Best before MAR 2000).

На обороте открытки на нескольких языках (включая русский!) сообщаются сведения о гарантиях, режиме работы, развернутая информация по типоразмерам, штриховой код (который можно вырезать и отправить на фирму с претензией по качеству), название страны, где изготовлены батарейки. Самое важное дополнительно сообщается и на этикетке батарейки: Sunwatt (знак R, три разновидности обозначения типоразмеров, указана страна), HIPOWER (знака R нет, две разновидности обозначения типоразмеров, страна не указана), Vnn (знака R нет, три разновидности обозначения типоразмеров, страна указана).

Кроме блистеров используют еще два вида упаковок - прозрачную термоусаживаемую пленочную или в виде мешочка (у 9-вольтовых батареек) и коробки - обычно на 24 штуки. В такой картонной коробке батарейки могут размещаться в блистерах, в пленке или без индивидуальной упаковки. На коробке обязательна информация, о которой говорилось выше.

Срок службы любой батарейки определяется несколькими факторами, такими, как уровень потребления энергии данного прибора или устройства, количество часов его непрерывного использования, возраст батареек и мощность, на которой данный прибор работает.

Как утилизовать. Щелочные батарейки можно выкидывать вместе с любым бытовым мусором без какой-либо опасности для окружающей среды.

Батарейки необходимо извлекать из любого прибора в том случае, если вы его не используете в течение нескольких месяцев. Кроме того, их нельзя оставлять в приборе, когда он включен в бытовую электросеть.

Батарейки, которые носят в открытом виде в кармане или сумке, при контакте с другими металлическими предметами могут подвергнуться замыканию, что в свою очередь может вызвать их протекание или неисправность.

Батарейки всегда должны заменяться одновременно. Смешивание старых и новых батареек, а также типов батареек (таких, как солевые и щелочные) приводит к снижению качества работы устройства и может вызвать протекание.

Наиболее распространённые форматы элементов питания:

Формат

Номенклатура/МЭК

Форма

Размеры,мм

Напряжение

Обиход. название

LR8 / D425 / 25A

"мизинчиковая"

"мизинчиковая"

"пальчиковая"

R14 / LR14 / UM2

"средняя"

"большая"

MN27 / A27 / BL1

"для сигнализаций"

MN21 / A23 / K23A / LRV08

"для сигнализаций"

R1 / LR1 / UM5 / 910

"бочёнок"

"бочёнок"

"бочёнок"

вышел из обихода

A476 / 4LR44 / V4034PX

"боченок"

"боченок"

Параллелепипед

"квадратная"

6F22/6LR61/6F22UT

Параллелепипед

48,5 * 26,5 * 17,5 9

LR521/(SR)521W/379

таблетка

"часовая"

LR60 / LR621 / SR621W / 164 / 364 / GP64A

таблетка

"часовая"

LR726 / LR59 / 196 / 396 / GP96A / (SR)726

таблетка

"часовая"

LR41 / 192 / 392 / GP92A / 392 / SR41W

таблетка

"часовая"

LR626 / LR66 / 177 / GP77A / 377 / SR626W

таблетка

"часовая"

LR754 / LR48 / 193 / GP93A / 393 / SR754W

таблетка

"часовая"

LR921 / LR69 / LR40 / 171 / GP71A / 371 / SR920W

таблетка

"часовая"

LR926 / LR57 / 195 / GP95A / 395 / SR927W

таблетка

"часовая"

LR1120 / LR55 /191 / GP91A / 391 / SR1120W

таблетка

"часовая"

LR936 / LR45 / 194 / GP94A / 394 / SR936W

таблетка

"часовая"

LR1130 / LR54 / 189 / GP89A / 389 / SR1130W

таблетка

"часовая"

LR721 / LR58 / 162 / GP62A / 362 / SR721W

таблетка

"часовая"

LR43 / 186 / GP86A /386 / SR43W

таблетка

"часовая"

LR44 / A76 / GP76A / 357 / SR44W

таблетка

"часовая"

LR9 / 625A / KA625 / V625U

"плоская"

"плоская"

"плоская"

"плоская"

"плоская"

"плоская"

"плоская"

"плоская"

http://www.patlah.ru

"Энциклопедия Технологий и Методик" Патлах В.В. 1993-2007 гг.

Каждый современный человек периодически сталкивался с вопросами замены батарейки и раз уж вы попали на эту страницу, значит у вас возникли сомнения в правильности выбора того или иного выбора элемента питания. В рамках данной статьи мы разложим все популярные стандарты актуальных батареек по типам и видам.

Все современные батарейки можно разделить на следующие классы:

Сухие (угольно-цинковые, солевые) - одни из самых дешёвых, достаточно массово выпускаются. Минусы: низкая ёмкость; не подходят для работы с мощными нагрузками и теряют заряд при отрицательных температурах.
Щелочные К ним относятся наиболее популярные «алкалиновые» и щелочно-марганцевые. Оптимальны для больших токов, практически не замечают низкие температуры.
Ртутные Отличная энергоемкость, но из-за вредности ртути нашли лишь ограниченное использование.
Серебряные Высокая ёмкость. Длительное хранение. Минус только один, очень дороги в производстве
Литиевые. Литиевые батарейки обладают целым рядом положительных характеристик: Длительное время хранения. Высокое напряжение на один элемент (3В). Легкие и компактные


Отсутствие или наличие буквы L перед маркировкой элемента питания характеризует его электрохимическую систему: без буквы L- солевой; c буквой L щелочной (Alkaline)


Не перезаряжаемые цилиндрические батарейки бывают солевые, алкалиновые и реже литиевые. Напряжение питания у новых элементов 1,5 Вольта, по мере эксплуатации потихоньку снижается.

Батарейки типа AAA (R03, LR03, UM4) В народе также известны как мизинчиковые.
Батарейки типа AA (R6 / LR06 / UM3) - обиходное название пальчиковые
AAAA (LR8 / D425 / 25A) - Редко встречается, иногда попадается в устройствах с небольшим токовым потреблением
Элементы питания типа С (R14 / LR14 / UM2) - в настоящее время мало используемая (в СССР иногда называли средней)
тип D (R20 / LR20) , в настоящее время редко применяется. Союзное название - большая


Миниатюрные источники питания в народе называют таблетками, наверное за схожость по размерам на лекарственные средства. В основном используются в наручных часах и . Расчитаны обычно на стандартное напряжение в 1,5 В.


Таблица соответствия миниатюрных элементов питания типа - таблетка разных фирм
Renata Eveready Sony/Maxell Varta Rayovac Duracell Vinnic Bulova Timex Citizen Seiko Lec Camelion

















































































































































































Гальванический элемент или батарейка - это простейший источник электричества, который работает на принципах химического взаимодействия определенных веществ друг с другом. Она была изобретена ученым Алессандро Вольта, но последние данные из раскопок древних фараонов дают основания полагать, что гальванические элементы были известны человеку уже не одну тысячу лет. И так давайте попытаемся понять, как все же работает гальванический элемент и разберем устройство батарейки.

Батарейка - в повседневной жизни мы так называем устройство способное обеспечить электричеством различные приборы, устройства. Батарейка может иметь различные химические составы, состоять из одного гальванического элемента или нескольких (для увеличения емкости, напряжения).

Суть элемента питания – преобразование накопленной химической энергии в электричество.

Ниже расскажем о основных составляющих батарейки, способах классификации батареек и непосредственно предоставим таблицу соответствий для этих элементов питания.

Конструктивно все современные батарейки состоят из следующих элементов:

  1. Катода
  2. Анода
  3. Электролита

Исходя из картинки мы видим, что у батарейки имеется катод (положительный электрод) и анод (отрицательный электрод).
Электроды помещаются в электролит (может состоять из жидких хим. элементов и из сухих).

2) Классификации элементов питания

Суть классификации батареек – группировка элементов питания по их свойствам.

Можно выделить следующие определяющие свойства элементов питания:

  1. Форм-фактор батарейки
  2. Химический состав (тип электролита)
  3. Типы химической реакции

1. Данный способ классификации к нам пришел из USA (ANSI).

В этом методе учитывались только физические размеры элемента без его состава.

Вот пример обозначений:

2. Группировку по второму свойству имеет место в международном обозначении (Международная Электротехническая Комиссия).

Этот метод на текущий момент является наиболее популярным, т.к. учитывает больше свойств элемента в своих обозначениях.

Вот пример обозначений:

  • LR23
  • LR12

Расшифровываются данные обозначения согласно установленным правилам.

Разберем обозначение на примере элемента LR23 :

2.A. Первая буква – указывает на химический состав элемента питания. В нашем случае это щелочный состав электролита.

* Возможны обозначения, где нет первой буквы. Это означает, что элемент питания имеет солевой химический состав электролита.

** Случается, что перед первой буквой имеет место быть числовое значение, оно указывает количество параллельных соединений в данном элементе питания.

2.B. Вторая буква указывает на форму элемента. В нашем примере элемент имеет цилиндрическую форму.

2.C. Последнее значение – число, которое указывает на габариты элементы питания в соответствии с предопределенной таблицей.

В нашем примере элемент питания имеет габариты 17×50 мм .

3. Можно выделить 2 типа химических реакций:

3) Таблица соответствий гальванических элементов

Цилиндрические элементы

Вид Обозначение Типовая емкость
мАч
Размеры:
диаметр
x
длина
мм
Примечание
Основное МЭК ANSI/NEDA ГОСТ,ТУ Другие
Солевая A R23 17 x 50
Щелочная LR23
Солевая AA R6 15D 316 Пальчиковая
MN1500
MX1500
1100 14,5 x 50,5 Элементы такого размера производятся с 1907 года и являются наиболее распространённым типом элементов питания.
Щелочная LR6 15A А316 2700-3000
(Li-FeS) FR6 15LF 3000-3500
(Ni-MH) HR6 1.2H2 1700-2900
(NiCd) KR157/51 10015 600-1000
(Ni-Zn) ZR6 1800-2000
Солевая AAA R03 24D 286 Мизинчиковая
MN2400
MX2400
540 10,5 x 44,5 Производятся с 1911 года.
Щелочная LR03 24A A286 1000-1100
(Li-FeS) FR03 24LF 1100-1300
Ni-MH 800-1000
(Ni-Zn) ZR03 650-750
Щелочная AAAA LR8D425 25A MX2500 625 8,3 x 42,5 Щелочные 9-вольтовые батареи обычно состоят из 6 элементов AAAA. Отдельные элементы изредка применяются в малогабаритных электроприборах.
Щелочная B LR12 А336 8350 21,5 x 60 Из трех таких элементов состоит Батарея 3336. По отдельности практически не используются.
Солевая C R14 14D 343 Baby
MN1400
MX1400
3800 26,2 x 50
Щелочная LR14 14A А343 8000
(NiMH) 4500-6000
Солевая D R20 13D 373 U2 (В Британии до 1970-х)
MN1300
MX1300
1-КС-У-3 (СССР до начала 1960-х)
8000 34,2 x 61,5 Производятся с 1898 года. Этот элемент питания разрабатывался специально для электрических фонарей. Часто используется в энергонагруженных электроприборах, таких, как переносные магнитофоны.
Щелочная LR20 13A А373 19500
(NiMH) 9000-11500
Солевая F R25 33 x 91
Щелочная LR25
Щелочная N LR1 910A 293 MN9100 1000 12 x 30,2 Обычно используются в лазерных указках, беспроводных дверных звонках и микрофонах.
Солевая 1/2AA R14250 312 250 14,5 x 25
Солевая 314 500 14,5 x 38
Солевая R10 R10 332 1800 21,5 x 37,3 В СССР использовалась в измерительных приборах и некоторых детских игрушках.

Элементы номинальным напряжением 3 В

Обозначения Емкость, мАч Диаметр, мм Длина, мм Комментарий
Основное Другие
32600 3000-6000 34 61 По размеру похож на элемент D
26650 2300-5000 26 65 (2300 LiFePo4)
25500 2500-5000 25 50 По размеру похож на элемент C
18650 168A 2200-3400 18 65 Из этих элементов собраны аккумуляторные батареи Tesla Roadster)
10440 ~250 10 44 По размеру похож на элемент AAA
14500 ~700 14 50 По размеру похож на элемент AA
16340 Tenergy 30200, R123, RCR123A 750-1200 17 34.5 Существует неперезаряжаемый литиевый элемент аналогичных размеров (CR 123) с напряжением 3 В и ёмкостью 1500 мАч.
15270 CR2
(CR17355, 5046LC)
750-850 15,1 26.7 Элемент существует в 2-х исполнениях:
неперезаряжаемый литиевый элемент с напряжением 3 В и ёмкостью 750 мАч,
перезаряжаемый элемент с напряжением 3 В с ёмкостью 280-850 мАч
18500 1400 18 50
17670 1800 17 67 По длине - как два элемента R123.
17500 1100 17 50 По размеру похож на элемент A, в 1,5 раза длиннее R123.
14250 ~250 14 25 По размеру похож на половину элемента AA.
10280 ~180 10 28
10180 90 10 18

Таблица источников питания состоящие из нескольких или более соединённых последовательно аккумуляторов или элементов питания.

Обозначение Типовая емкость
мАч
Номинальное напряжение
В
Форма Контакты Размеры,
мм
Примечание
МЭК ANSI/NEDA Другие
3R12 (угольно-цинковая)
3LR12 (Щелочная)
MN1203 (угольно-цинковая) Pocketable Battery;
1203;
BD 4,5;
КБС (КБС-Л-0,5, КБС-Х-0,7);
3,7-ФМЦ-0,50, 4Д-ФМЦ-0,7;
3336Л, 3336Х;
«Рубин», «Планета» и др.
6100 (Щелочная)
1200 (угольно-цинковая)
4.5 Плоская квадратная с закруглёнными боками + короткий вывод
− длинный вывод
65×61×21 Внутри - 3 элемента типа B
6LR61 (Щелочная)
6F22 (угольно-цинковая)
6KR61 (NiCd)
1604A (Щелочная)
1604D (угольно-цинковая)
1604LC (Литиевая)
7.2H5 (NiMH)
11604 (NiCd)
PP3
9 вольт
«Крона» (угольно-марганцевая)
«Крона ВЦ» (воздушно-цинковая)
«Корунд» (щелочная)
MN1604
565 (Щелочная)
400 (угольно-цинковая)
1200 (Литиевая)
175 (NiMH)
120 (NiCd)
500 (Литий полимер, перезаряж.)
9
7.2 (NiMH и NiCd)
8.4 (некоторые NiMH и NiCd)
Параллелепипед + штекер
− гнездо
48.5×26.5×17.5 Щелочные батареи обычно состоят из шести элементов AAAA, а солевые - чаще всего из нестандартных галетных элементов.
3LR50 (Щелочная) 1181A (Щелочная) A23
3LR50
MN21K23A
LRV08 (LRV8)
40 (Щелочная) 12 Цилиндр
(Или блок таблеток)
+ конец с выступом
− плоский конец
⌀10×29 Используется в миниатюрных радиочастотных устройствах, таких как брелок автосигнализации, бесконтактный ключ и т. д.
2R10 Duplex 3 Цилиндр + конец с выступом
− плоский конец
⌀ 21.8×74.6 мм Внутри содержат два элемента R10, отсюда и название ‘Duplex’
2CR5 5032LC EL2CR5, DL245, RL2CR5 1500 6 два цилиндра Оба контакта на одном конце 34 x 45 x 17 Состоит из двух литиевых или литий-ионных элементов
4LR61 (Щелочная) 1412A (Щелочная) 7K67, J 625 (Щелочная) 6 Параллелепипед с обрезанным углом Плоские контакты
− верхняя сторона
+ обрезанный угол
48.5 × 35.6 × 9.18 Обычно используются в устройствах, которые должны быть плоскими или чтобы было невозможным подключить батарею, перепутав полярность, например в глюкометрах или измерителях давления. Удобны пожилым людям благодаря большому размеру.
4R25Y (Щелочная)
4R25 (угольно-цинковая)
908A (Щелочная)
908D (угольно-цинковая)
Lantern
6 Volt
Spring Top
MN908
26000 (Щелочная)
10500 (угольно-цинковая)
6 Параллелепипед Пружины
+ с краю
− в центре
115 × 68.2 × 68.2 Пружины обычно делают так, чтобы можно было присоединить к ним контакты, предназначенные для батарей с гайками.
4R25Y (Щелочная)
4R25 (угольно-цинковая)
915A (Щелочная)
908 (угольно-цинковая)
Lantern
6 Volt
Screw Top
26000 (Щелочная)
10500 (угольно-цинковая)
6 Параллелепипед Резьбовые контакты
+ с краю
− в центре
115 × 68.2 × 68.2 Используются, когда требуется более надёжное соединение.
4LR25-24 (Щелочная)
4R25-2 (carbon-zinc)
8R25 (carbon-zinc)
918A (Щелочная)
918D (carbon-zinc)
918
R25-2
Big Lantern
Double Lantern
MN918
52000 (Щелочная)
22000 (carbon-zinc)
6 Параллелепипед Резьбовые контакты на верхней крышке 127 × 136.5 × 73 По размеру - как две батареи предыдущего типа
6F100 1603 Panasonic PP9, Eveready 276, Exell Battery 276 и др. 5000 (щелочная) 9 Параллелепипед 51 × 64,5 × 80 Применялась в транзисторных приемниках
15F20 215 412, B122, BA 261/U, BLR-122, M122, PX72, U15, UG015, V72PX, VS084 и др. 140 22,5 Параллелепипед Круглые контакты на торцевых крышках 26,2 × 16 × 51 Применялась в измерительных приборах, маломощныхRegency TR-1)






2024 © sdelano-krasnodar.ru.