Испытатель оксидных конденсаторов. Простой пробник оксидных конденсаторов Самодельный прибор для проверки оксидных конденсаторов


В последнее время выход из стоя электролитических конденсаторов стал одной из основных причин поломок радиоаппаратуры. Но для правильной диагностики не всегда достаточно иметь только измеритель емкости, поэтому сегодня мы поговорим об еще одном параметре - ESR.
Что это, на что влияет и чем измеряют, я попробую рассказать в этом обзоре.

Для начала скажу, что этот обзор будет кардинально отличаться от предыдущего, хотя оба этих обзора об измерительных приборах радиолюбителя.
1. В этот раз не конструктор, а скорее «полуфабрикат»
2. Паять в этом обзоре я ничего не буду.
3. Схемы в этом обзоре также не будет, думаю что к концу обзора будет понятно, почему.
4. Данный прибор очень узконаправленный, в отличии от предыдущего «многостаночника».
5. Если о предыдущем приборе знало очень много людей, то этот почти никому неизвестен.
6. Обзор будет маленьким

Для начала, как всегда, упаковка.

К упаковке прибора претензий не возникло, простенько и компактно.

Комплектация совсем спартанская, в комплекте только сам прибор и инструкция, щупы и батарейка в комплект не входят.

Инструкция также не блещет информативностью, общие фразы и картинки.

Технические характеристики прибора, указанные в инструкции.

Ну и более понятным языком.
Сопротивление
Диапазон - 0,01 - 20 Ом
Точность - 1% + 2 знака.

Эквивалентное последовательное сопротивление (ESR)
Диапазон - 0,01 - 20 Ом, работает в диапазоне конденсаторов от 0.1мкФ
Точность - 2% + 2 знака

Емкость
Диапазон - 0,1мкФ - 1000мкФ (3-1000 мкФ измеряются на частоте 3КГц, 0.1-3мкФ - 72КГц)
Точность - зависит от частоты измерения, но составляет около 2% ± 10 знаков

Индуктивность
Диапазон - 0-60 мкГн на частоте 72КГц и 0-1200 мкГн на частоте 3КГц.
Точность - 2% + 2 знака.

Для начала я расскажу что же это такое - ESR.
Многие довольно часто слышали слово - конденсатор, а некоторые даже их видели:)
Если не видели, то на фото ниже наиболее часто встречающиеся в технике представители.

В реальной жизни эквивалентная схема конденсатора выглядит примерно так, как показано на рисунке ниже.
На картинке показаны -
C - эквивалентная емкость, r - сопротивление утечки, R - эквивалентное последовательное сопротивление, L - эквивалентная индуктивность.

А если упрощенно, то
Эквивалентная емкость - это конденсатор в «чистом» виде, т.е. без недостатков.
Сопротивление утечки - это то сопротивление, которое разряжает конденсатор помимо внешних цепей. Если провести аналогию с бочкой воды, то это естественное испарение. Оно может быть больше, может быть меньше, но оно будет всегда.
Эквивалентная индуктивность - Можно сказать что это дроссель, включенный последовательно с конденсатором. Например это обкладки конденсатора свернутые в рулон. Этот параметр мешает конденсатору при работе на высоких частотах и чем выше частота, тем больше влияние.
Эквивалентное последовательное сопротивление, ESR - Вот и тот параметр, который мы и рассматриваем.
Его можно представить как резистор, включенный последовательно с идеальным конденсатором.
Это сопротивление выводов, обкладок, физические ограничения и т.д.
В самых дешевых конденсаторах это сопротивление обычно выше, в более дорогих LowESR ниже, а ведь есть еще Ultra LowESR.
А если просто (но очень утрированно), то это все равно, что набирать воду в бочку через короткий и толстый шланг или через тонкий и длинный. Заправится бочка в любом случае, но чем тоньше шланг, тем это будет происходить дольше и с большими потерями во времени.

Из-за этого сопротивления невозможно конденсатор мгновенно разрядить или зарядить, кроме того при работе на высоких частотах именно это сопротивление греет конденсатор.
Но самое плохое то, что обычный измеритель емкости его не измеряет.
У меня часто были случаи, когда при измерении плохого конденсатора прибор показывал нормальную емкость (и даже выше), но устройство не работало. При измерении ESR-метром сразу становилось понятно, что внутреннее сопротивление у него очень высокое и работать нормально он не может (по крайней мере там, где стоял до этого).
Некоторые наверняка видели вспухшие конденсаторы. Если отсечь случаи, когда конденсаторы пухли просто лежа на полке, то остальное будет являться следствием повышения внутреннего сопротивления. При работе конденсатора постепенно увеличивается внутреннее сопротивление, происходит это от неправильного режима работы или от перегрева.
Чем больше внутреннее сопротивление, тем больше начинает греться конденсатор изнутри, чем больше нагрев изнутри, тем больше растет сопротивление. В итоге электролит начинает «кипеть» и из-за повышения внутреннего давления конденсатор вспухает.

Но вспухает конденсатор не всегда, иногда на вид он абсолютно нормальный, емкость в порядке, а нормально не работает.
Подключаешь его к ESR метру, а у него вместо привычных 20-30мОм уже 1-2 Ома.
Я пользуюсь в работе самодельным ESR метром, собранным много лет назад по схеме с форума ProRadio, автор конструкции - Go.
Этот ESR метр попадается в моих обзора довольно часто и меня часто спрашивают о нем, но когда я увидел в новых поступлениях магазина уже готовый прибор, то решил заказать его для пробы.
Еще подогревало интерес то, что информации по этому прибору я нигде не нашел, ну тем интереснее:)

Внешне прибор выглядит как «полуфабрикат», т.е. собранная конструкция, но без корпуса.
Правда для удобства производитель установил всю эту конструкцию на такие вот пластиковые «ножки», даже гаечки пластиковые:)

С правого торца прибора расположены клеммы для подключения измеряемого элемента.
К сожалению схема подключения двухпроводная, а значит что чем длиннее будут провода щупов (если их использовать) тем больше будет погрешность показаний.
В более правильных конструкциях используется четырехпроводное подключение, по одной паре конденсатор заряжается/разряжается, по другой происходит измерение напряжения на конденсаторе. в таком варианте провода можно сделать хоть метр длиной, глобальной разницы в показаниях не будет.
Также рядом с клеммами находятся два контакта печатной платы, они используются при калибровке прибора (это я понял уже потом).

Снизу предусмотрено место для установки батареи питания типа 6F22 9 Вольт (Крона).

Прибор также может питаться и от внешнего источника питания, подключаемого посредством разъема MicroUSB. при подключении питания к этому разъему батарея отключается автоматически. при частом использовании я бы советовал питать прибор от USB разъема, так как батареи разражаются довольно ощутимо.
На фото также видно, что стяжка, при помощи которой крепится батарея, многоразовая. Замок стяжки имеет язычок, при нажатии на который ее можно открыть.

В собранном виде конструкция выглядит как то так.

Включается и управляется прибор всего одной кнопкой.
Включение - нажатие дольше 1 сек.
Нажатие в рабочем режиме переключает прибор между измерениями L и С-ESR.
Выключение - нажатие кнопки более чем 2 секунды.

При включении прибора высвечивается сначала название и версия прошивки, затем идет надпись, предупреждающая о том, что конденсаторы надо обязательно разрядить перед проверкой.
При удержании кнопки более двух секунд высвечивается надпись - Выключение питания и при отпускании кнопки прибор отключается.

Как я выше писал, прибор имеет два рабочих режима.
1. измерение индуктивности
2. измерение емкости, сопротивления (или ESR).
В обоих режима на экране отображается напряжение питания прибора.

Естественно посмотрим что из себя представляет начинка этого прибора.
На вид она заметно сложнее чем у предыдущего тестера транзисторов, что косвенно говорит либо о непродуманности схемы либо о лучших характеристиках, мне кажется что в данном случае скорее второй вариант.

Ну дисплей особо описывать смысла нет, классический 1602 вариант. Единственно что удивило - черный цвет текстолита.

Общее фото печатной платы я сделал в двух вариантах, со вспышкой и без, вообще прибор очень не хотел фотографироваться, мешая мне всеми возможными способами, потому заранее приношу извинение за качество.
На всякий случай напоминаю, что все фото в моих обзорах кликабельны.



«сердцем» прибора является микроконтроллер 12le5a08s2, информации по конкретно этому контроллеру я не нашел, но в даташите другой его версии проскакивала информация что он собран на ядре 8051.

Измерительная часть содержит довольно много элементов, кстати заявлено что процессор имеет 12 бит АЦП, который используется для измерения. Вообще такая разрядность весьма неплохая, скорее интересно насколько это реально.
Изначально думал начертить схему всего этого «безобразия», но потом понял, что особого смысла это не имеет, так как характеристики прибора в плане диапазона измерения не очень большие. Но если кому интересно, то можно попробовать перечертить.

Также в измерительной схеме задействован операционный усилитель, как по мне довольно неплохой, я такой использовал в усилителе сигнала с токового шунта электронной нагрузки.

Судя по всему это узел переключения питания между батареей и USB разъемом.

Снизу платы почти ничего интересного, кроме кнопки компонентов никаких нет:(

Но я нашел интересное даже на пустой печатной плате:)))
Дело в том, что когда я получил прибор и игрался с ним, то категорически не мог заставить его отображать емкость конденсатора выше 680мкФ, он упорно показывал OL и все.
Осматривая плату я не мог не заметить три пары контактов для подключения кнопок (судя по маркировке).
Сначала я ткнул key2, на что получил на экране - калибровка нуля (вольный перевод) - ОК.
Ха, думаю, ну щаззз мы тебя.
А вот и нет, калибровка заняла у меня уйму времени, так как из-за редкости прибора информации по нему нет, вообще. Единственное упоминание со словом калибровка было .

Замыкание других пар контактов выводит на экран значения констант (судя по всему).
причем были еще варианты, с другими буквами, а также иногда при замыкании key3 проскакивала надпись - Сохранено ОК (на англ ессно).

Но вернемся к калибровке.
Прибор сопротивлялся всем своими силами.
Для начала я попробовал коротнуть клеммы пинцетом и калибровать так, но прибор в итоге показывал правильную емкость и отрицательное сопротивление у конденсаторов.
После этого я коротнул два тестовых пятачка на плате, прибор стал показывать корректное сопротивление, но диапазон измерения емкости сузился до 220-330 мкФ.
И уже после долгих поисков в инете я наткнулся на фразу (ссылка есть чуть выше) - Use 3cm thick copper wire for short circuit to clear
В переводе это означало - используйте медный провод толщиной 3см. я подумал что толщина в 3см это как то круто и скорее всего имелось в виду 3см длины.
Отрезал кусочек провода длиной около 3см и коротнул патчки на плате, стало работать гораздо лучше, но все равно не так.
Взял провод подлиннее раза в два и повторил операцию. После этого прибор стал работать уже вполне нормально и дальнейшие тесты я проводил уже после этой калибровки.

Для начала я подобрал разных компонентов, при помощи которых буду проверять как работает прибор.
На фото они уложены в соответствии с порядком тестирования, только дроссели лежат наоборот.
Все компоненты проверялись от меньшего номинала к большему.

Перед тестами я посмотрел осциллографом что выдает прибор на свои измерительные клеммы.
Судя по показаниям осциллографа частота установлена примерно на 72КГц.

В плане измерения индуктивности показания вполне сошлись с указанными на компонентах.
1. индуктивность 22мкГн
2. индуктивность 150мкГн
Кстати, в процессе калибровки я заметил, что никакие манипуляции не влияли на точность измерения емкости и индуктивности, а отражались только на точности измерения сопротивления.

С индуктивностью 150мкГн форма сигнала на клеммах выглядела так

С конденсаторами небольшой емкости также не возникло проблем.
1. 100нФ 1%
2. 0.39025 мкФ 1%

Форма сигнала при измерении конденсатора 0.39025 мкФ

Дальше пошли электролиты.
1. 4.7мкФ 63В
2. 10мкФ 450В
3. 470мкФ 100 Вольт
4. 470мкФ 25 В lowESR
Отдельно скажу насчет конденсатора 10мкФ 450 Вольт. Меня очень удивили показания и это не дефект конкретного элемента, так как конденсаторы новые и у меня их два одинаковых. показания также были одинаковые у обоих и другие приборы показывали именно емкость около 10мкФ. мало того, даже на этом приборе пару раз проскочили показания со значением около 10мкФ. почему так, мне непонятно.

1. 680мкФ 25 Вольт низкоимпедансный
2. 680мкФ 25 Вольт lowESR.
3. 1000мкФ 35 Вольт обычный Samwha.
4. 1000мкФ 35 Вольт Samwha RD серия.

Форма сигнала на контактах при тестировании обычного 1000мкФ 35 Вольт Samwha.
По идее, при измерении емких электролитов, частота должна была упасть до 3КГц, но на осциллограмме явно видно, что частота не менялась в процессе всех тестов и составляла около 72КГц.

1000мкФ 35 Вольт Samwha RD серии иногда выдавал и такой результат, проявлялось это при плохом контакте выводов с измерительными клеммами.

Уже после того как сделал групповое фото, измерил и сложил детали по своим местам я вспомнил, что забыл измерить сопротивление резисторов.
Для измерения я взял пару резисторов
1. 0.1 Ома 1%
2. 0.47 Ома 1%
Сопротивление второго резистора несколько завышено и явно вылазит за предел 1%, скорее даже ближе к 10%. но я думаю что это скорее сказывается то, что измерение проходит на переменном токе и влияет индуктивность проволочного резистора, так как мелкий резистор на 2.4 Ома показал сопротивление 2.38 Ома.

Когда искал информацию по прибору, то пару раз натыкался на фото этого прибора, где показано одновременное измерение с разными частотами, но мой прибор такое не выводит, опять же непонятно почему:(
То ли другая версия, то ли еще что, но разница есть. У меня вообще сложилось впечатление, что измеряет он только на частоте 72КГц.
Высокая частота измерения это хорошо, но всегда удобно иметь альтернативу.

Резюме
Плюсы
В работе прибор показал довольно неплохую точность (правда после калибровки)
Если не учитывать то, что мне пришлось его калибровать, то можно сказать что конструкция готова к работе «из коробки», но допускаю что это мне так «повезло».
Двойное питание.

Минусы
Полное отсутствие информации по калибровке прибора
Узкий диапазон измерения
У меня прибор нормально начал работать только после калибровки.

Мое мнение. Если честно, то у меня создалось стойкое двоякое впечатление о приборе. С одной стороны я получил вполне неплохие результаты, а с другой я получил больше вопросов чем ответов.
Например я так на 100% и не понял как его правильно калибровать, также не понял почему мой конденсатор на 10мкФ отображается как 2.3, ну и кроме того непонятно, почему измерение проходит только на 72КГц.
Я даже не знаю, рекомендовать его или нет. Если паять совсем не хочется, то можно использовать этот или транзистор тестер из прошлого обзора, а если хочется лучших характеристик (в основном в сторону расширения диапазона) и не нужно измерять индуктивности, то можно собрать C-ESR метр от Go.
Очень расстроил верхний диапазон измерения емкости в 1000мкФ, хотя я спокойно измерял и 2200 мкФ, но точность прибора падала, он начинал явно завышать показания емкости.

В общем на этом пока все, очень буду рад любой информации по прибору и с удовольствием добавлю ее в обзор. Допускаю что у кого нибудь он тоже есть, хотя и очень маловероятно, так как я не нашел по нему ничего, хотя часто все приборы являются повторением каких то уже известных конструкций.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +45 Добавить в избранное Обзор понравился +48 +115

При помощи этого простого прибора можно проверить конденсатор на утечку или обрыв.

Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах DD1.1- DD1.3 генератор прямоугольных импульсов, частота следования которых составляет около 75 кГц, а скважность примерно 3.

Схема прибора для проверки конденсаторов

Элемент DD1.4, включенный инвертором, исключает влияние нагрузки на работу генератора. С его выхода импульсное напряжение идет по цепи: резистор R3, конденсатор С2 и проверяемый конденсатор, подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр РА1 и шунтирующий их резистор R2.
Детали этой нагрузочной цепи подобраны таким образом, что без проверяемого конденсатора в ней ток через стрелочный прибор РА1 не превышает 15 мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток в цепи увеличивается до 40 ... 60 мкА, и если прибор будет показывать ток в этих пределах, то независимо от емкости проверяемого конденсатора можно сделать вывод о его исправности.
Эти пределы тока цепи отмечают на шкале прибора цветными метками. Если емкость проверяемого конденсатора больше 5 мкФ, то при нажатии на кнопку стрелка индикатора резко отклонится до конечной отметки шкалы, а затем, возвращаясь назад, устанавливается в пределах отмеченного сегмента.
Полярный конденсатор "плюсовым" выводом подключают к гнезду XS1.При внутреннем обрыве проверяемого конденсатора стрелка индикатора останется на исходной отметке, а если конденсатор пробит или его внутренне сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка индикатора отклоняется за пределы контрольного сегмента и даже может зашкаливать.

Настройка прибора для проверки конденсаторов

После включения питания стрелка должна отклониться до деления примерно 15 мкА. В случае необходимости такой ток устанавливают подбором резистора R3. Затем к гнездам «Сх» подключают конденсатор емкостью 220 ... 250 пФ и подбором резистора R2 добиваются отклонения стрелки индикатора до отметки 50 мкА.
После этого замкнув гнезда, убеждаются в отклонении стрелки за пределы шкалы.Монтажную плату устройства вместе с питающей его батареей 3336Л следует разместить в корпусе подходящих размеров. Но прибор можно питать от любого другого источника с напряжением 5 В и током не менее 50 мА.

Печатная плата прибора



В качестве микроамперметра можно использовать китайский стрелочный прибор. Вот его шкала:

Вместо нее изготавливается другая шкала (клеится поверх прежней).
На новой шкале отмечается сектор: относительно "родной" шкалы он будет находиться в районе 8...20 Ом по верхним делениям. Вот так она будет выглядеть

Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом. Выключатель SB1 не применяется. Всё устройство получает питание от 4-х батареек 1,5В, то есть 6В, что ни как не сказывается на работе измерителя. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА.

Внешний вид прибора

Примеры измерений


Примечание :
Источник : Массовая радиобиблиотека (МРБ), И.А.Нечаев, "Конструкции на логических элементах цифровых микросхем" стр.43, Издательство "Радио и связь"
Фото с сайта radio-hobby.org

Проблема быстрого контроля исправности оксидных конден­саторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируе­мой аппаратуры. Предлагается еще один вариант простого при­бора, аналогичного уже описанному в «Радио», но с использова­нием стрелочного индикатора.

Многих радиолюбителей, да и про­фессиональных мастеров по ре­монту радио- и телеаппаратуры, на­верняка заинтересовала статья Р. Хафизова «Пробник оксидных конденса­торов» в журнале «Радио» (2003, № 10, с. 21). Общеизвестный метод проверки с помощью омметра, позво­ляя приблизительно оценить емкость и измерить утечку оксидных конден­саторов, далеко не всегда дает пол­ную информацию об их качестве. Опе­ративная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства. Осо­бенно это касается наиболее часто используемых конденсаторов емкос­тью от единиц до нескольких десятков микрофарад.

После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем. Поэтому вместо микросхемы К561ТЛ1 приме­нил, как мне кажется, более распрост­раненную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использо­вал стрелочный индикатор уровня М68501 от магнитофона.

Применение стрелочного индикато­ра позволило сделать прибор более точным, достаточно компактным и бо­лее экономичным. Ток потребления не зависит от режима работы и составля­ет около 1 мА, что дает возможность использовать малогабаритный источ­ник питания - батарею из трех миниа­тюрных дисковых элементов для ла­зерной указки.

Несколько измененная схема при­ведена на рис. 1. Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конден­сатора в пределах от 2 до 50 Ом и ем­кость от 5 до 50 мкФ.

Конструктивно прибор может быть выполнен в виде мини-тестера с вы­носными щупами и выключателем пи­тания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением пита­ния, что существенно увеличит срок службы батареи.

В данном варианте размеры корпу­са составляют 90 x 45 x 20 мм. Индика­тор расположен с левой стороны попе­рек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней сто­роны. Монтаж элементов прибора вы­полнен на печатной плате, чертеж ко­торой приведен на рис. 2

Детали и замена

Для выбора вида измерений ис­пользован переключатель SA1 с фик­сацией из серии ПКН. Выключатель питания SA2 - миниатюрный движко­вый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором.

Вместо указанной на схеме микро­схемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.

Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815. Конденсаторы - малогабаритные керамические, резис­торы - мощностью 0,125 — 0,25 Вт. Ок­сидный конденсатор - К50-16 или импортный. Диоды VD2-VD5 - любые германиевые высокочастотные. Тип стрелочного индикатора сущест­венного значения не имеет.

Настройка прибора

Налаживание прибора заключается в установке частоты генератора в пре­делах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соот­ветственно С2 и С1, а также в установ­ке стрелки индикатора на конец шкалы в режиме холостого хода подбором ре­зисторов R4, R5, R8. Предварительно резистором R6 выставляют постоян­ное напряжение на коллекторе транзи­стора, примерно равное половине на­пряжения питания.

Градуировка шкалы не составит большого труда, так как пластмассо­вые индикаторы уровня легко вскры­ваются: достаточно по периметру крышки «пройтись» лезвием ножа. На место старой шкалы наклеивают полоску бумаги, на которую затем на­носят соответствующие риски и над­писи. После градуировки шкалы крышку устанавливают на место и фиксируют клеем.

Нелинейность шкалы таких индика­торов играет положительную роль, позволяя несколько расширить диапа­зон измерений. Градуировка шкалы электрической емкости производи­лась путем усреднения замеров не­скольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные не­проволочные резисторы.

После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них при­шлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка. Этот монитор по­бывал уже у двух мастеров и был воз­вращен назад ввиду «отсутствия элек­трической схемы и сложности ремон­та». В течение нескольких минут ока­залось возможным проверить ЭПС и емкость всех имеющихся на плате оксидных конденсаторов, среди кото­рых был обнаружен один с завышен­ным значением ЭПС и заниженной емкостью. После его замены монитор заработал!

Редактор - А. Соколов, графика - Ю. Андреев

Вариант изготовленной печатной платы прибора

Вид со стороны дорожек

Набор для самостоятельной сборки прибора Вы можете купить на нашем сайте «Мастер» (В наборе печатная плата и все детали, кроме измерительной головки)

Вариант внешнего вида прибора

От редакции журнала «Радио». Эквивалентное по­следовательное сопротивление (ЭПС, а в англоязычной терминологии - ESR) конденсатора зависит от многих факто­ров: его типа, емкости, номинального напряжения, частоты, на которой про­водят измерения, и т. д. Например, ЭПС танталовых конденсаторов для поверх­ностного монтажа емкостью от 4,7 до 47 мкФ на напряжение от 10 до 35 В, измеренное на частоте 100 кГц, нахо­дится в пределах от 0,9 до 5 Ом, причем оно увеличивается с уменьшением ем кости и номинального напряжения. У алюминиевых конденсаторов К50-38 емкостью от 4,7 до 47 мкФ на напряже­ние от 6,3 до 160 В ЭПС, также изме­ренное на частоте 100 кГц, увеличива­ется от 0,5 (47 мкФ х 160 В) до 5 Ом (47мкФх6,ЗВ) и от 4,5 (4,7мкФх160В) до 14 Ом (4,7 мкФ х 100 В). Поэтому универсального критерия оценки при­годности конденсатора в зависимости от значения ЭПС не существует реше­ние по отбраковке следует принимать в каждом конкретном случае.

Радио №10, 2005г.


П О П У Л Я Р Н О Е:

    Схема переключения автомобильных сигналов и/или ламп

    Для звукового и светового эффекта можно собрать простенькую схему на трёх транзисторах.

Конденсатор - элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и - Q - на другой. Ёмкость здесь в фарадах, напряжение - вольтах, заряд - кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV - рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь - 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC - цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C - в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени - 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC - 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно - достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти - десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления - даёт непрогнозируемую погрешность.

Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С - метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz - соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость - длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 - любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема - любая из серии 555 (LM555, NE555 и другие), русский аналог - КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

Большое спасибо за проделанную работу. Еще один из выводов на основании прочитанного:Головка в 1 мА оказалась тупа для такого детектора. ведь именно включение последовательно с головкой резистора растягивает шкалу. Поскольку большая точность не нужна можно попробовать головку от магнитофона. (одна беда она изрядно электризуется, чуть рукавом свитера задел и стрелка сама на пол шкалы скачет) а ток полного отклонения около 240 мкА (точное название М68501)
А вообще чтоб конденсатор выбраковать разве недостаточно шкалы ом до 10-12?

Приставка к мультиметру - измеритель ESR

Идеальный конденсатор, работая на переменном токе должен обладать только реактивным (емкостным) сопротивлением. Активная составляющая должна быть близка к нулю. Реально, хороший оксидный (электролитический) конденсатор должен обладать активным сопротивлением (ESR) не более 0,5-5 Ом (зависит от емкости, номинального напряжения). Практически, в аппаратуре, проработавшей несколько лет, можно встретить, казалось бы исправный конденсатор емкостью 10 мкФ с ESR до 100 Ом и более. Такой конденсатор, несмотря на наличие емкости, - негоден, и скорее всего является причиной неисправности или некачественной работы аппарата, в котором он работает.

На рисунке 1 показана схема приставки к мультиметру для измерения ESR оксидных конденсаторов. Чтобы измерить активную составляющую сопротивления конденсатора необходимо выбрать такой режим измерения, при котором реактивная составляющая будет очень мала. Как известно, реактивное сопротивление емкости снижается с увеличением частоты. Например, на частоте 100 кГц при емкости 10 мкФ реактивная составляющая буде менее 0,2 Ом. То есть, измеряя сопротивление оксидного конденсатора емкостью более 10 мкФ по падению на нем переменного напряжения частотой 100 кГц и более, можно утверждать, что. при заданной погрешности 10-20% результат измерения можно будет принять практически только как величину активного сопротивления.
И так, схема, показанная на рисунке 1, представляет собой генератор импульсов частоты 120 кГц, выполненный на логических инверторах микросхемы D1, делитель напряжения, состоящий из сопротивлений R2,R3 и тестируемого конденсатора СХ, и измерителя переменного напряжения на СХ, состоящего из детектора VD1-VD2 и мультиметра, включенного на измерение малых постоянных напряжений.
Частота установлена цепью R1-C1. Элемент D1.3 является согласующим, а на элементах D1.4-D1.6 сделан выходной каскад.

Подстройкой сопротивления R2 выполняют юстировку прибора. Так как в популярном мультиметре М838 нет режима измерения малых переменных напряжений (а именно с этим прибором у автора работает приставка), в схеме пробника имеется детектор на германиевых диодах VD1-VD2. Мультиметр измеряет постоянное напряжение на С4.
Источником питания служит «Крона». Это такая же батарея, как та, которой питается мультиметр, но приставка должна питаться от отдельной батареи.
Монтаж деталей приставки выполнен на печатной плате, разводка и расположение деталей которой показаны на рисунке 2.
Конструктивно приставка выполнена в одном корпусе с источником питания. Для подключения к мультиметру используются Собственные щупы мультиметра. Корпусом служит обычная мыльница.
От точек Х1 и Х2 сделаны коротенькие щупы. Один из них жесткий, в виде шила, а второй гибкий длиной не более 10 см, око-неченый таким же заостренным щупом. Эти щупы можно подключать к конденсаторам, как к немонтированным, так к расположенным на плате (выпаивать их не требуется), что значительно упрощает поиск дефектного конденсатора при ремонте. Желательно подобрать к этим щупам «крокодильчики» для удобства проверки немонтированных (или демонтированных) конденсаторов.

Микросхему К561ЛН2 можно заменить аналогичной К1561ЛН2, ЭКР561ЛН2, а с изменениями в плате - К564ЛН2, CD4049.
Диоды Д9Б - любые гарманиевые, например, любые Д9, Д18, ГД507. Можно попробовать применить и кремниевые.
Выключатель S1 - микротумблер предположительно китайского производства. У него плоские выводы под печатный монтаж.
Налаживание приставки. После проверки монтажа и работоспособности подключите мультиметр. Желательно частотомером или осциллографом проверить частоту на Х1-Х2. Если она лежит в пределах 120-180 кГц, - нормально. Если нет, - подберите сопротивление R1.
Подготовьте набор постоянных резисторов сопротивлением 1 Ом, 5 Ом, 10 Ом, 15 Ом, 25 Ом, 30 Ом, 40 Ом, 60 Ом, 70 Ом и 80 Ом (или около того). Подготовьте лист бумаги. Подключите вместо испытуемого конденсатора резистор сопротивлением 1 Ом. Поверните ползунок R2 так, чтобы мультиметр показал напряжение 1 mV. На бумаге запишите «1 Ом = 1mV». Далее, подключайте другие резисторы, и, не меняя положение R2, делайте аналогичные записи (например. «60Ом = 17mV»).
Получится таблица расшифровки показаний мультиметра. Эту таблицу нужно аккуратно оформить (вручную или на компьютере) и наклеить на корпус приставки, так чтобы таблицей было удобно пользоваться. Если таблица бумажная, - наклейте на её поверхность скотч-ленты, чтобы защитить бумагу от истирания.
Теперь, проверяя конденсаторы, вы считываете показания мультиметра в милливольтах, затем по таблице примерно определяете ESR конденсатора и принимаете решение о его пригодности.
Хочу заметить, что эту приставку можно приспособить и для измерения емкости оксидных конденсаторов. Для этого нужно существенно понизить частоту мультивибратора, подключив параллельно С1 конденсатор емкостью 0,01 мкФ. Для удобства можно сделать переключатель «С / ESR». Так же потребуется сделать еще одну таблицу, - со значениями емкостей.
Желательно, для соединения с мультиметром использовать экранированный кабель, чтобы исключить влияние наводок на показания мультиметра.

Аппарат, на плате которого вы ищите неисправный конденсатор, должен быть выключен, как минимум за полчаса до начала поисков (чтобы конденсаторы, имеющиеся в его схеме, разрядились).
Приставку можно использовать не только с мультиметром, но и с любым прибором, способным измерять милливольты постоянного или переменного напряжения. Если ваш прибор способен измерять малое переменное напряжение (милливольтметр переменного тока или дорогой мультиметр) можно детектор на диодах VD1 и VD2 не делать, а измерять переменное напряжение прямо на испытуемом конденсаторе. Естественно, табличку нужно делать под конкретный прибор, с которым вы планируете работать в дальнейшем. А в случае использования прибора со стрелочным индикатором можно на его шкалу нанести дополнительную шкалу для измерения ESR.

Радиоконструктор, 2009, №01 стр. 11-12 Степанов В.

Литература:
1 С Рычихин. Пробник оксидных конденсаторов Радио, №10, 2008, стр.14-15.

Более года использую прибор по схеме Д. Телеша из журнала "Схемотехника" №8, 2007 г., стр. 44-45.

На милливольтметре М-830В на диапазоне 200 мВ показания, без установленного конденсатора, - 165...175 мВ.
Напряжение питания 3 В (2 батарейки АА работали больше года), частота измерения от 50 до 100 кГц (установил 80 кГц подбором конденсатора С1). Практически измерял емкости от 0,5 до 10000 МкФ и ESR от 0,2 до 30 (при тарировке показания прибора в мВ оответствуют резисторам того-же номинала в Ом). Использовал для ремонта импульсных блоков питания ПК и БРЭА.

Практически готовая схема для проверки ЕПС, если собраь на КМОП, то будет работать и от 3-х вольт... .

ESR-метр

Т. е., прибор для измерения ЭПС - эквивалентного последовательного сопротивления.

Как выяснилось, работоспособность (электролитических - частности) конденсаторов, особенно тех, которые работают в силовых импульсных устройствах, влияет в значительной степени внутреннее эквивалентное последовательное сопротивление переменному току. Различные производители конденсаторов по разному относятся к значениям частоты, на которой должна определяться величина ЭПС, но частота эта не должна быть ниже 30кГц.

Величина ЭПС в какой-то степени связана с основным параметром конденсатора - емкостью, но доказано, что конденсатор может быть неисправным из-за большого собственного значения ЭПС, даже при наличии заявленной емкости.

вид снаружи

В качестве генератора использована микросхема КР1211ЕУ1 (частота при номиналах на схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП АТ/АТХ - одинаковые параметры (коэффициенты трансформации в частности) практически от всех производителей. Внимание!!! В трансформаторе Т1 используется лишь половинка обмотки.

Головка прибора имет чувствительность 300мкА, но возможно использование других головок. Предпочтительно использование более чувствительных головок.

Шкала этого прибора растянута на треть при измерении до 1-го Ома. Десятая Ома легко отличима от 0,5 Ома. В шкалу укладываются 22 Ома.

Растяжку и диапазон можно варьировать с помощью добавления витков к измерительной обмотке (с щупами) и/или к обмоткам III того или иного трансформатора.

http://www. matei. ro/emil/links2.php

http://www. . au/cms/gallery/article. html? slideshow=0&a=103805&i=2

https://pandia.ru/text/78/437/images/image058_1.jpg" alt="image" width="550" height="374">

При подключении исправного конденсатора, светодиод должен гаснуть полностью, т. к. короткозамкнутые витки полностью срывают генерацию. При неисправных конденсаторах, светодиод продолжает гореть или чуть-чуть пригасает, в зависимости от величины ESR.

Простота данного пробника, позволяет собрать его в корпусе от обычного фломастера, основное место в нём уделяется батарее, кнопке включения и светодиоде выступающем над корпусом. Миниатюрность пробника позволяет разместить один из щупов, там же, а второй сделать максимально коротким проводом, что уменьшит влияние индуктивности щупов, на показания. К тому же не понадобится крутить головой, для визуального контроля индикатора и установки щупов, что часто неудобно в процессе работы.

Конструкция и детали.
Катушки трансформатора намотаны на одном кольце, желательно наименьшего размера, его магнитная проницаемость не очень важна, генераторные имеют число витков по 30 вит. каждая, индикаторная - 6 вит. и измерительная 4 вит. или 3 вит. (подбирается при настройке), толщина всех проводов 0,2-0,3мм. Измерительную обмотку следует мотать проводом не менее 1.0 мм. (Вполне подойдет монтажный провод – лишь бы обмотка уместилась на кольце.) R1 регулирует в небольших пределах частоту и потребляемый ток. Резистор R2 ограничивает ток короткого замыкания создаваемого проверяемым конденсатором, он, по соображения защиты от заряженного конденсатора, который разрядится через него и обмотку, должен быть 2-х ваттным. Варьируя его сопротивлением, можно легко отличить сопротивление от 0.5 Ом и выше, по свечению светодиода. Транзистор подойдёт любой маломощный. Питание осуществляется от одной батареи 1.5 вольта. В ходе испытаний прибора, его даже удавалось запитывать от двух щупов стрелочного омметра, включенного на единицы Ом.

Номиналы деталей:
Rоm
R2* - 1оm
C1- 1 мкФ
С2- 390пФ

Настройка.
Не представляет никаких трудностей. Правильно собранный генератор начинает работать сразу на частоте 50-60 кГц, если не загорится светодиод, нужно поменять полярность включения. Потом подключая к измерительной обмотке вместо конденсатора резистор 0.5-0.3 Ома добиваются еле заметного свечения, подбирая витки и резистор R2, но обычно их количество колеблется от 3-х до 4-х. В конце всего проверяют на заведомо исправном и неисправном конденсаторе. При наличии небольших навыков, легко распознаются ESR конденсатора до 0.3-0,2 Ома, что вполне достаточно для отыскания неисправного конденсатора, от ёмкости в 0,47 и до 1000мкФ. Вместо одного светодиода можно поставить два и в цепь одного из них включить стабилитрон на 2-3 вольта, но понадобится увеличить обмотку, да и конструктивно прибор усложнится. Можно сделать сразу два щупа, выходящими из корпуса, но следует предусмотреть расстояние между ними, чтоб было удобно мерить различные по величине, конденсаторы. (например - для SMD конденсаторов можно использовать идею ув. Barbos"а - и конструктивно выполнить пробник в виде пинцета)

Ещё одно применение этого прибора: им удобно проверять кнопки управления в аудио и видеоаппаратуре, т. к. со временем некоторые кнопки дают ложные команды из-за повышенного внутреннего сопротивления. Тоже касается и проверки печатных проводников на обрыв или проверки переходного сопротивления контактов.
Надеюсь, пробник займёт достойное место в строю приборов-помощников «жукостроителя».

Впечатление от использования этого пробника:
- я забыл, что такое неисправный конденсатор;
- 2/3 старых конденсаторов пришлось выкинуть.
Ну и самое приятное – в магазин и на базар без пробника я не хожу.
Продавцы конденсаторов – очень недовольны.

Измеритель емкости и индуктивности

Е. Терентьев
Радио, 4, 1995

http://www. *****/shem/schematics. html? di=54655

Предлагаемый стрелочный измеритель позволяет определять параметры большинства встречающихся в практике радиолюбителя катушек индуктивности и конденсаторов. Кроме измерений параметров элементов, прибор может быть использован как генератор фиксированных частот с декадным делением, а также как генератор меток для радиотехнических измерительных приборов.

Предлагаемый измеритель емкости и индуктивности отличается от аналогичного ("Радио", 1982, 3, стр.47) простотой и малой трудоемкостью изготовления. Диапазон измерений разбит подекадно на шесть поддиапазонов с предельными значениями емкости 100 пф - 10 мкф для конденсаторов и индуктивности 10 мкГн - 1 Гн для катушек индуктивности. Минимальные значения измеряемых емкости, индуктивности и точность измерения параметров на пределе 100 пф и 10 мкГн определяет конструктивная емкость клемм или гнезд для подключения выводов элементов. На остальных поддиапазонах погрешность измерения в основном определяется классом точности стрелочной измерительной головки. Потребляемый прибором ток не превышает 25 мА.

Принцип работы прибора основан на измерении среднего значения разрядного тока емкости конденсатора и ЭДС самоиндукции индуктивности. Измеритель, принципиальная схема которого приведена на рис.1, состоит из задающего генератора на элементах DD1.5, DD1.6 с кварцевой стабилизацией частоты, линейки делителей частоты на микросхемах DD2 - DD6 и буферных инверторов DD1.1 - DD1.4. Резистор R4 ограничивает выходной ток инверторов. Цепь из элементов VD7, VD8, R6, C4 используется при измерении емкости, а цепь VD6, R5, R6, C4 - при измерении индуктивности. Диод VD9 защищает микроамперметр PA1 от перегрузки. Емкость конденсатора C4 выбрана сравнительно большой, чтобы уменьшить дрожание стрелки на максимальном пределе измерения, где тактовая частота минимальна - 10 Гц.

В приборе использована измерительная головка с током полного отклонения 100 мкА. Если применить более чувствительную - на 50 мкА, то в этом случае можно уменьшить предел измерения в 2 раза. Семисегментный светодиодный индикатор АЛС339А используется как индикатор измеряемого параметра, его можно заменить индикатором АЛС314А. Вместо кварцевого резонатора на частоту 1 МГц можно включить слюдяной или керамический конденсатор емкостью 24 пф, однако при этом погрешность измерения увеличится на 3-4%.

Возможны замены диода Д20 диодами Д18 или ГД507, стабилитрона КС156А - стабилитронами КС147А, КС168А. Кремниевые диоды VD1-VD4, VD9 могут быть любыми с максимальным током не менее 50 мА, а транзистор VT1 - любым из типов КТ315, КТ815. Конденсатор CЗ - керамический К10-17а или КМ-5. Все номиналы элементов и частота кварца могут отличаться на 20 %.

Настройку прибора начинают в режиме измерения емкости. Переводят переключатель SB1 в верхнее по схеме положение и устанавливают переключатель диапазона SA1 в положение, соответствующее пределу измерения 1000 пФ. Подключив образцовый конденсатор емкостью 1000 пФ к клеммам XS1, XS2, движок подстроечного резистора R6 выводят в положение, при котором стрелка микроамперметра PA1 установится на конечное деление шкалы. Затем переводят переключатель SB1 в режим измерения индуктивности и, подключив к клеммам катушку индуктивности величиной 100 мкГн, в том же положении переключателя SA1 производят аналогичную калибровку подстроечным резистором R5. Естественно, точность калибровки прибора определяется точностью используемых образцовых элементов.

Измерения прибором параметров элементов желательно начинать с большего предела измерений для избежания резкого зашкаливания стрелки головки прибора. Для обеспечения питания измерителя можно использовать постоянное напряжение 10...15 В или переменное напряжение от подходящей обмотки трансформатора питания другого прибора с током нагрузки не менее 40...50 мА. Мощность отдельного трансформатора должна быть не менее 1 Вт.

В случае питания прибора от батареи аккумуляторов или гальванических элементов напряжением 9 В его можно упростить и повысить экономичность исключением диодов выпрямителя напряжения питания, индикатора HG1 и переключателя SB1, выведя на переднюю панель прибора три клеммы (гнезда) от точек 1, 2, 3, указанных на принципиальной схеме. При измерении емкости конденсатор подключают к клеммам 1 и 2, при измерении индуктивности катушку подключают к клеммам 1 и 3.

Примечание редакции. Точность измерителя LC со стрелочным индикатором в определенной степени зависит от участка шкалы, поэтому введение в схему переключаемого делителя частоты на 2, 4 или аналогичное изменение частоты задающего генератора (для варианта без кварцевого резонатора) позволяет снизить требования к габаритам и классу точности показывающего прибора.

Приставка-измеритель LC к цифровому вольтметру

http:///izmer/izmer4.php

Цифровой измерительный прибор в лаборатории радиолюбителя теперь не редкость. Однако не часто им можно измерить параметры конденсаторов и катушек индуктивности, даже если это мультиметр. Описываемая здесь простая приставка предназначена для использования совместно с мультиметрами или цифровыми вольтметрами (например, М-830В, М-832 и им подобными), не имеющими режима измерения параметров реактивных элементов.

Для измерения емкости и индуктивности с помощью несложной приставки использован принцип, подробно описанный в статье А. Степанова "Простой LC-метр" в "Радио" № 3 за 1982 г. Предлагаемый измеритель несколько упрощен (вместо генератора с кварцевым резонатором и декадного делителя частоты применен мультивибратор с переключаемой частотой генерации), но он позволяет с достаточной для практики точностью измерять емкость в пределах 2 пф...1 мкф и индуктивность 2 мкГн... 1 Гн. Кроме того, в нем вырабатывается напряжение прямоугольной формы с фиксированными частотами 1 МГц, 100 кГц, 10 кГц, 1 кГц, 100 Гц и регулируемой амплитудой от 0 до 5 В, что расширяет область применения устройства.

Задающий генератор измерителя (рис. 1) выполнен на элементах микросхемы DD1 (КМОП), частоту на его выходе изменяют с помощью переключателя SA1 в пределах 1 МГц - 100 Гц, подключая конденсаторы С1-С5. С генератора сигнал поступает на электронный ключ, собранный на транзисторе VT1. Переключателем SA2 выбирают режим измерения "L" или "С". В показанном на схеме положении переключателя приставка измеряет индуктивность. Измеряемую катушку индуктивности подключают к гнездам Х4, Х5, конденсатор - к ХЗ, Х4, а вольтметр - к гнездам Х6, Х7.


При работе вольтметр устанавливают в режим измерения постоянного напряжения с верхним пределом 1 - 2В. Следует учесть, что на выходе приставки напряжение изменяется в пределах 0... 1 В. На гнездах Х1, Х2 в режиме измерения емкости (переключатель SA2 - в положении "С") присутствует регулируемое напряжение прямоугольной формы. Его амплитуду можно плавно изменять переменным резистором R4.

Питается приставка от батареи GB1 с напряжением 9 В ("Корунд" или аналогичные ей) через стабилизатор на транзисторе VT2 и стабилитроне VD3.

Микросхему К561ЛА7 можно заменить на К561ЛЕ5 или К561ЛА9 (исключив DD1.4), транзисторы VT1 и VT2-на любые маломощные кремниевые соответствующей структуры, стабилитрон VD3 заменим на КС156А, КС168А. Диоды VD1, VD2 - любые точечные германиевые, например, Д2, Д9, Д18. Переключатели желательно использовать миниатюрные.


Корпус прибора - самодельный или готовый подходящих размеров. Монтаж деталей (рис. 2) в корпусе - навесной на переключателях, резисторе R4 и гнездах. Вариант внешнего вида показан на рисунке. Разъемы ХЗ-Х5 - самодельные, изготовлены из листовой латуни или меди толщиной 0,1...0,2 мм, конструкция их понятна из рис. 3. Для подключения конденсатора или катушки необходимо ввести выводы детали до упора в клиновидный зазор пластин; этим достигается быстрая и надежная фиксация выводов.


Налаживание прибора производят с помощью частотомера и осциллографа. Переключатель SA1 переводят в верхнее по схеме положение и подбором конденсатора С1 и резистора R1 добиваются частоты 1 МГц на выходе генератора. Затем переключатель последовательно переводят в последующие положения и подбором конденсаторов С2 - С5 устанавливают частоты генерации 100 кГц, 10 кГц, 1 кГц и 100 Гц. Далее осциллограф подключают к коллектору транзистора VT1, переключатель SA2 - в положении измерения емкости. Подбором резистора R3 добиваются формы колебаний, близкой к меандру на всех диапазонах. Затем переключатель SA1 снова устанавливают в верхнее по схеме положение, к гнездам Х6, Х7 подключают цифровой или аналоговый вольтметр, а к гнездам ХЗ, Х4 - образцовый конденсатор емкостью 100 пф. Подстройкой резистора R7 добиваются показаний вольтметра 1 В. Потом переводят переключатель SA2 в режим измерения индуктивности и к гнездам Х4, Х5 подключают образцовую катушку с индуктивностью 100 мкГн, резистором R6 устанавливают показания вольтметра, также равные 1 В.

На этом настройка прибора заканчивается. На остальных диапазонах точность показаний зависит только от точности подбора конденсаторов С2 - С5. От редакции. Налаживание генератора лучше начать с частоты 100 Гц, которую устанавливают подбором резистора R1, конденсатор С5 не подбирают. Следует помнить, что конденсаторы СЗ - С5 должны быть бумажными или, что лучше, метаплопленочными (К71, К73, К77, К78). При ограниченных возможностях в подборе конденсаторов можно использовать и переключение секцией SA1.2 резисторов R1 и их подбор, а число конденсаторов надо уменьшить до двух (С1, СЗ). Номиналы сопротивлений резисторов составят в этом: случав 4,7: 47; 470 к0м.

(Радио 12-98

Список источников по теме ЭПС конденсаторов в журнале «Радио»

Хафизов Р. Пробник оксидных конденсаторов. - Радио, 2003, №10, с.21-22. Степанов В. ЭПС и не только... - Радио, 2005, №8, с.39,42. Васильев В. Прибор для проверки оксидных конденсаторов. - Радио, 2005, №10, с.24-25. Нечаев И. Оценка эквивалентного последовательного сопротивления конденсатора. - Радио, 2005, №12, с.25-26. Щусь А. Измеритель ЭПС оксидных конденсаторов. – Радио, 2006, №10, с. 30-31. Куракин Ю. Индикатор ЭПС оксидных конденсаторов. - Радио, 2008, №7, с.26-27. Платошин И. Измеритель ЭПС оксидных конденсаторов. - Радио, 2008, №8, с. 18-19. Рычихин С. Пробник оксидных конденсаторов. - Радио, 2008, №10, с.14-15. Табаксман В., Фелюгин В. Измерители ЭПС оксидных конденсаторов. - Радио, 2009, №8, с 49-52.

Измеритель ёмкости конденсаторов

В. Васильев, г. Набережные Челны

Это устройство построено на основе прибора, ранее описанного в нашем журнале . В отличие от большинства таких приборов оно интересно тем, что проверка исправности и емкости конденсаторов возможна и без их демонтажа из платы. В эксплуатации предлагаемый измеритель весьма удобен и имеет достаточную точность.

Тот, кто занимается ремонтом бытовой или промышленной радиоаппаратуры, знает, что исправность конденсаторов удобно проверять без их демонтажа. Однако многие измерители емкости конденсаторов такой возможности не предоставляют. Правда, одна подобная конструкция была описана в . Она имеет небольшой диапазон измерения, нелинейную шкалу с обратным отсчетом, что снижает точность. При проектировании же нового измерителя решалась задача создания прибора с широким диапазоном, линейной шкалой и прямым отсчетом, чтобы можно было пользоваться им, как лабораторным. Помимо этого, прибор должен быть диагностическим, т. е. способным проверять и конденсаторы, зашунтированные р-n переходами полупроводниковых приборов и сопротивлениями резисторов.

Принцип работы прибора таков. На вход дифференциатора , в котором проверяемый конденсатор используется в качестве дифференцирующего, подается напряжение треугольной формы. При этом на его выходе получается меандр с амплитудой, пропорциональной емкости этого конденсатора. Далее детектор выделяет амплитудное значение меандра и выдает постоянное напряжение на измерительную головку.

Амплитуда измерительного напряжения на щупах прибора примерно 50 мВ, что недостаточно для открывания р-n переходов полупроводниковых приборов, поэтому они не оказывают своего шунтирующего действия.

Прибор имеет два переключателя. Переключатель пределов "Шкала" с пятью положениями: 10 мкФ, 1 мкФ, 0,1 мкФ, 0,01 мкФ, 1000 пФ. Переключателем "Множитель" (Х1000, Х100, Х10, Х1) меняется частота измерения. Таким образом, прибор имеет восемь поддиапазонов измерения емкости от 10000 мкФ до 1000 пФ, что практически достаточно в большинстве случаев.

Генератор треугольных колебаний собран на ОУ микросхемы DA1.1, DA1.2, DA1.4 (рис. 1). Один из них, DA1.1, работает в режиме компаратора и формирует сигнал прямоугольной формы, который поступает на вход интегратора DA1.2. Интегратор преобразует прямоугольные колебания в треугольные. Частота генератора определяется элементами R4, С1-С4. В цепи обратной связи генератора стоит инвертор на ОУ DA1.4, который обеспечивает автоколебательный режим. Переключателем SA1 можно устанавливать одну из частот измерения (множитель): 1 Гц (Х1000), 10 Гц(х100), 100 Гц(х10), 1 кГц(х1).


Рис. 1

ОУ DA2.1 - повторитель напряжения, на его выходе сигнал треугольной формы амплитудой около 50 мВ, который и используется для создания измерительного тока через проверяемый конденсатор Сх.

Так как емкость конденсатора измеряется в плате, на нем может находиться остаточное напряжение, поэтому для исключения повреждения измерителя параллельно его щупам подключены два встречно-параллельных диода моста VD1.

ОУ DA2.2 работает как дифференциатор и выполняет роль преобразователя ток - напряжение. Его выходное напряжение: Uвых=(R12...R16) Iвх=(R12...R16)Cх dU/dt. Например, при измерении емкости 100 мкФ на частоте 100 Гц получается: Iвх=Сх dU/dt=100 100 мВ/5 мс=2мА, Uвых= R16 Iвх=1 кОм мА=2 В.

Элементы R11, С5-С9 необходимы для устойчивой работы дифференциатора. Конденсаторы устраняют колебательные процессы на фронтах меандра, которые делают невозможным точное измерение его амплитуды. В результате на выходе DA2.2 получается меандр с плавными фронтами и амплитудой, пропорциональной измеряемой емкости. Резистор R11 также ограничивает входной ток при замкнутых щупах или при пробитом конденсаторе. Для входной цепи измерителя должно выполняться неравенство: (3...5)СхR11<1/(2f).

Если это неравенство не выполнено, то за половину периода ток Iвх не достигает установившегося значения, а меандр - соответствующей амплитуды, и возникает погрешность в измерении. Например, в измерителе, описанном в , при измерении емкости 1000 мкФ на частоте 1 Гц постоянная времени определяется как Cх R25=1000 мкФ 910 Ом=0,91 с. Половина же периода колебаний Т/2 составляет лишь 0,5 с, поэтому на данной шкале измерения окажутся заметно нелинейными.

Синхронный детектор состоит из ключа на полевом транзисторе VT1, узла управления ключом на ОУ DA1.3 и накопительного конденсатора С10. ОУ DA1.2 выдает управляющий сигнал на ключ VT1 во время положительной полуволны меандра, когда его амплитуда установлена. Конденсатор С10 запоминает постоянное напряжение, выделенное детектором.

С конденсатора С10 напряжение, несущее информацию о величине емкости Сх, через повторитель DA2.3 подается на микроамперметр РА1. Конденсаторы С11, С12 - сглаживающие. С движка переменного резистора калибровки R22 снимается напряжение на цифровой вольтметр с пределом измерения 2 В.

Источник питания (рис. 2) выдает двухполярные напряжения ±9 В. Опорные напряжения образуют термостабильные стабилитроны VD5, VD6. Резисторами R25, R26 устанавливают необходимую величину выходного напряжения. Конструктивно источник питания объединен с измерительной частью прибора на общей монтажной плате.


Рис. 2

В приборе использованы переменные резисторы типа СПЗ-22 (R21, R22, R25, R26). Постоянные резисторы R12-R16 - типа С2-36 или С2-14 с допустимым отклонением ±1 %. Сопротивление R16 получено соединением последовательно нескольких подобранных резисторов. Сопротивления резисторов R12-R16 можно использовать и других типов, но их надо подобрать с помощью цифрового омметра (мультиметра). Остальные постоянные резисторы - любые с мощностью рассеяния 0,125 Вт. Конденсатор С10 - К53-1 А, конденсаторы С11-С16 - К50-16. Конденсаторы С1, С2 - К73-17 или другие металлопленочные, СЗ, С4 - КМ-5, КМ-6 или другие керамические с ТКЕ не хуже М750, их необходимо также подобрать с погрешностью не более 1 %. Остальные конденсаторы - любые.

Переключатели SA1, SA2 - П2Г-3 5П2Н. В конструкции допустимо применить транзистор КП303 (VT1) с буквенными индексами А, Б, В, Ж, И. Транзисторы VT2, VT3 стабилизаторов напряжения могут быть заменены другими маломощными кремниевыми транзисторами соответствующей структуры. Вместо ОУ К1401УД4 можно использовать К1401УД2А, но тогда на пределе "1000 пФ" возможно появление ошибки из-за смещения входа дифференциатора, создаваемого входным током DA2.2 на R16.

Трансформатор питания Т1 имеет габаритную мощность 1 Вт. Допустимо использовать трансформатор с двумя вторичными обмотками по 12 В, но тогда необходимо два выпрямительных моста.

Для настройки и отладки прибора потребуется осциллограф. Неплохо иметь частотомер для проверки частот генератора треугольных колебаний. Нужны будут и образцовые конденсаторы.

Прибор начинают настраивать с установки напряжений +9 В и -9 В с помощью резисторов R25, R26. После этого проверяют работу генератора треугольных колебаний (осциллограммы 1, 2, 3, 4 на рис. 3). При наличии частотомера измеряют частоту генератора при разных положениях переключателя SA1. Допустимо, если частоты отличаются от значений 1 Гц, 10 Гц, 100 Гц, 1 кГц, но между собой они должны отличаться точно в 10 раз, так как от этого зависит правильность показаний прибора на разных шкалах. Если частоты генератора не кратны десяти, то необходимой точности (с погрешностью 1 %) добиваются подбором конденсаторов, подключаемых параллельно конденсаторам С1-С4. Если емкости конденсаторов С1-С4 подобраны с необходимой точностью, можно обойтись без измерения частот.







2024 © sdelano-krasnodar.ru.