Простой приемник коротковолновика-наблюдателя - Самодельные - Приемники, узлы и блоки. Трехламповый кв супергетеродин Самодельный приемник кв наблюдателя inurl reviews


Это самый простой (базовый) однодиапазонный вариант супергетеродинного приемника. Его принципиальная схема представлена на рис.2.

Входной сигнал любительского диапазона 80 м (полоса частот 3,5...3,8 МГц) величиной не менее 1 мкВ поступает на регулируемый аттенюатор 0R1, выполненный на сдвоенном потенциометре. По сравнению с одиночным потенциометром подобное решение обеспечивает бОльшую глубину регулировки ослабления (более 60 дБ) во всем КВ диапазоне, что позволяет обеспечить оптимальную работу приемника практически с любой антенной. Далее сигнал поступает на входной двухконтурный диапазонный полосовой фильтр (ДПФ), образованный катушками индуктивности LI, L2 и конденсаторами С2, С3, С5, С6 с внешнеемкостной связью через конденсатор С4. Показанное на схеме подключение к первому контуру через емкостной делитель С2,С3 рекомендуется для низкоомной антенны (четвертьволновый "луч” длиной около 20 м, диполь или "дельта” с фидером из коаксиального кабеля). Для высокоомной антенны в виде отрезка провода длиной значительно меньше четверти длины волны выход аттенюатора 0R1 подключают к выводу платы Х1, соединенному с первым контуром (L1,С2,C3) входного фильтра через конденсатор С1. Способ подключения каждой антенны подбирают экспериментально по максимальной громкости и качеству приема.

Схема этого двухконтурного ПДФ оптимизирована под сопротивление антенны 50 Ом и сопротивление нагрузки (R4) 200 Ом. При этом его коэффициент передачи за счет трансформации сопротивлений составляет примерно +3 дБ, что обеспечивает реализацию высокой чувствительности - не хуже 1 мкВ. В виду того, что с приемником может применяться антенна любой, случайной длины, да и при регулировке аттенюатором сопротивление источника сигнала на входе ПДФ может меняться в широком диапазоне, чтобы получить в таких условиях достаточно стабильную АЧХ, по входу ПДФ установлен согласующий резистор R1. В качестве катушек применены готовые малогабаритные дроссели стандартных номиналов, которые дешевы, уже широко доступны и, главное, можно отказаться от столь нелюбимых многими начинающими радиолюбителями самодельных катушек.

Выделенный ДПФ сигнал величиной не менее 1,4 мкВ подается на первый затвор полевого транзистора VT1. На второй его затвор поступает через конденсатор С7 напряжение гетеродина величиной порядка 1…3 Вэфф. Сигнал промежуточной частоты (500 кГц), являющийся разностью частот гетеродина и сигнала, величиной порядка 25…35 мкВ выделяется в цепи стока смесителя контуром, образованным индуктивностью обмотки ЭМФ Z1 и конденсаторами С12, С15. Развязывающие цепочки R11, C11 и R21, C21 защищают общую цепь питания смесителей от попадания в нее сигналов гетеродина, промежуточной и звуковой частоты.

Первый гетеродин приемника выполнен по схеме емкостной трехточки (вариант Клаппа) на транзисторе VT2. Контур гетеродина составлен из катушки индуктивности L3 и конденсатора С8,С9,С10. Частоту гетеродина можно перестраивать (с некоторым запасом по краям) в диапазоне 4000-4300 кГц конденсатором переменной емкости (КПЕ) 0С1. Резисторы R2, R5 и R7 определяют и жестко задают (за счет глубокой ООС) режим работы транзистора по постоянному току, чем и обеспечивается высокая стабильность частоты. Резистор R6 улучшает спектральную чистоту (форму) сигнала. Питание обоих гетеродинов +6 В стабилизировано интегральным стабилизатором DA1. Цепочки R10, C14, С16 и R12, C17 защищают общую цепь питания обоих гетеродинов и развязывают их друг от друга.

Основную селекцию сигналов в приемнике выполняет ЭМФ Z1 с полосой пропускания 2,75 кГц со средней полосой пропускания. В зависимости от типа примененного ЭМФ селективность по соседнему каналу (при расстройке на 3 кГц выше или ниже полосы пропускания) достигает 60...70 дБ. С его выходной обмотки, настроенной конденсаторами С19, С22 в резонанс на промежуточную частоту, сигнал поступает на детектор, который выполнен по схеме, аналогичной первому смесителю, на полевом транзисторе VT4. Его высокое входное сопротивление позволило получить минимально возможное затухание сигнала в ЭМФ основной селекции (порядка 10-12 дБ), поэтому на первом затворе величина сигнала составляет не менее 8…10 мкВ.

Второй гетеродин приемника выполнен на транзисторе VT3 почти по такой же схеме, что и первый, только вместо индуктивности применен керамический резонатор ZQ1. В этой схеме генерация колебаний возможна только при индуктивном сопротивлении цепи резонатора, т.е., частота колебаний находится между частотами последовательного и параллельного резонансов. Нередко в подобных приемниках во втором гетеродине используют довольно дефицитный комплект - кварцевый резонатор на 500 кГц и ЭМФ с верхней полосой пропускания. Это удобно, но заметно удорожает приемник.

В нашем приемнике в качестве частотозадающего элемента применен широко распространенный керамический резонатор на 500 кГц от пультов ДУ, имеющий достаточно широкий межрезонансный интервал (не менее 12-15 кГц). Подстройкой емкости конденсаторов С23, С24 второй гетеродин легко «тягается» по частоте в диапазоне, как минимум 493-503 кГц и, как показал опыт, при исключении прямых температурных воздействий обеспечивает достаточную для практики стабильность частоты. Благодаря этому свойству, для нашего приемника подходит практически любой ЭМФ со средней частотой около 500 кГц и полосой пропускания 2,1...3,1 кГц . Это может быть, скажем, ЭМФ-11Д-500-3,0В или ЭМФДП-500Н-3,1 или ФЭМ-036-500-2,75С, использованный автором, с буквенными индексами В, Н, С. Буквенный индекс указывает, какую боковую полосу относительно несущей выделяет данный фильтр — верхнюю (В) или нижнюю (Н), или же частота 500 кГц приходится на середину (С) полосы пропускания фильтра. В нашем приемнике это не имеет значения, поскольку при налаживании частоту второго гетеродина устанавливают на 300 Гц ниже полосы пропускания фильтра, и в любом случае будет выделяться верхняя боковая полоса. Требуемую частоту второго гетеродина для конкретного ЭМФ с полосой пропускания П (кГц) можно определить по простейшим формулам:

Для ЭМФ с верхней полосой F=500 кГц;

Со средней полосой F(кГц)=499,7 - П/2;

С нижней полосой F(кГц)=499,4 - П.

Напряжение сигнала второго гетеродина частотой около 500 кГц (в авторском экземпляре 498,33 кГц) и величиной порядка 1,5…3 Вэфф поступает на второй затвор VT4 и в результате преобразования спектр однополосного сигнала переносится с ПЧ в область звуковых частот. Коэффициент преобразования (усиления) детектора примерно 4.

Усиленный УЗЧ сигнал детектируется диодами VD1, VD2 , и управляющее напряжение АРУ поступает в цепь затвора регулирующего VT5.

Как только величина регулирующего напряжение превысит пороговое (примерно 1 В), транзистор открывается и образованный им совместно с резистором R20 делитель напряжения за счет отличных пороговых свойств такого регулятора весьма эффективно стабилизирует выходной сигнал звуковой частоты на уровне примерно 0,65-0,7 Вэфф, что соответствует максимальной выходной мощности примерно 60 мВт, а на 16омном - 30 мВт и приемник будет достаточно экономичным. При такой мощности современные импортные динамики с высоких КПД способны озвучить трехкомнатную квартиру, а вот для некоторых отечественных динамиков может показаться маловато, тогда можно повысить в 2 раза порог АРУ, установив в качестве VD1,VD2 красные светодиоды, при этом питание УНЧ нужно будет поднять до 12 В.

В режиме покоя или при работе на высокоомные головные телефоны приемник довольно экономичен - потребляет порядка 12 мА. При максимальной громкости звучания подключенной к его выходу динамической головки сопротивлением 8 Ом потребляемый ток может достигать 45 мА.

Блок питания годится любой промышленного изготовления или самодельный, обеспечивающий стабилизированное напряжение +9…12 В при токе не менее 50 мА.

Для автономного питания удобно применять батарейки, размещенные в специальном контейнере или аккумуляторы. Например, аккумулятора на 8,4 В размером с "Крону" и емкостью 200 мА/час хватает более чем на 3 часа прослушивания эфира на динамик при средней громкости, а при применении высокоомных телефонов - более 10 часов.

Все детали приемника , кроме разъемов, переменных резисторов и КПЕ, смонтированы на плате из одностороннего фольгированного стеклотекстолита размером 45х160 мм. Чертеж платы со стороны печатных проводников приведен на рис. 3, а расположение деталей - на рис.4. Плату в формате *.lay можно скачать из архива.

Транзисторы VT1, VT4 могут быть любой из серий BF961, BF964, BF980, BF981 или отечественные КП327. Для некоторых из этих транзисторов может потребоваться подбор истоковых резисторов до получения тока стока 1...2 мА.

Для гетеродинов подойдут импортные общецелевые транзисторы n-p-n типа 2SC1815, 2N2222 или отечественные КТ312, КТ3102, КТ306, КТ316 с любыми буквенными индексами. Полевой транзистор VT1 2N7000 может быть заменен аналогами BS170, BSN254, ZVN2120a, КП501а. Диоды VD1,VD2 1N4148 можно заменить на любые кремниевые КД503, КД509, КД521, КД522.

Постоянные резисторы — любого типа мощностью рассеивания 0,125 или 0,25 Вт.

Детали, устанавливаемые навесным монтажом на шасси (см. рис.5 ), могут быть любого типа. Потенциометры 0R1 - сдвоенный, может иметь сопротивление 1-3,3 кОм, 0R2 - 47-500 Ом. Конденсатор настройки 0С1 — желательно малогабаритный с воздушным диэлектриком с максимальной емкостью не менее 240пФ. При отсутствии такого конденсатора можно использовать малогабаритный КПЕ транзисторного радиовещательного приемника. Конечно, конденсатор настройки полезно было бы оснастить простейшим верньером с замедлением 1:3... 1:10.


Керамические контурные конденсаторы малогабаритные керамические термостабильные (с малым температурным коэффициентом емкости (ТКЕ) — групп ПЗЗ, М47 или М75) КД, КТ, КМ, КЛГ, КЛС, К10-7 или аналогичные импортные (дисковые оранжевые с черной точкой или многослойные с нулевым ТКЕ - МР0). Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные. С26, С29 желательно термостабильные пленочные, металлопленочные например серий МКТ, МКР и аналогичные. Остальные керамические блокировочные и электролитические - любого типа импортные малогабаритные.

Для намотки гетеродинной катушки L 3 использован готовый каркас с ферритовым подстроечником 600НН и экраном от стандартных контуров ПЧ 465 отечественных транзисторных радиоприемников (в частности, от радиоприемника "Альпинист”), для которого количество витков для получения требуемой индуктивности согласно формулы расчета равно:

W=11*SQRT(L[мкГн]) ,

в нашем случае для получения 8,2 мкГн требуется 31 виток провода диаметром 0,17-0,27 мм.

После намотки катушки равномерно в 3-х секциях внутрь каркаса ввинчивают подстроечник, и затем эта конструкция заключается в алюминиевый экран, при этом штатный цилиндрический магнитопровод не используют.

Вообще, в качестве каркаса самодельных катушек подойдут любые, доступные радиолюбителю, разумеется с соответствующей корректировкой печатных проводников:

Очень удобны и термостабильны импортные от контуров ПЧ 455 кГц, подобные примененному в , подстроечником которого служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку, количество витков для получения требуемой индуктивности равно W=6*SQRT(L[мкГн]) ,

в этом случае для получения 8,2 мкГн требуется 17 витков провода диаметром 0,17-0,27 мм.

Для популярных броневых сердечников типа СБ-12а формула расчета количества витков для получения требуемой индуктивности равно W=6,7*SQRT(L[мкГн]),

в этом случае для получения 8,2 мкГн требуется 19 витков провода диаметром 0,17-0,27 мм.

Если использованы готовые каркасы диаметром 7,5 мм с подстроечниками СЦР и экранами от контуров ПЧ блоков цветности телеприемников, то при длине намотки 8 мм (при малом числе витков намотку ведем виток к витку, а при большом числе витков - в навал) формула расчета количества витков для получения требуемой индуктивности равно W=14*SQRT(L[мкГн]),

в этом случае для получения 8,2 мкГн требуется 40 витков провода диаметром 0,17-0,27 мм.

Как уже отмечалось выше, в ПДФ в качестве катушек индуктивности применены стандартные импортные малогабаритные дроссели типа ЕС24 и аналогичные. Разумеется, если приобрести готовые дроссели требуемой индуктивности проблематично, можно применить и в ПДФ самодельные катушки, рассчитав число витков по приведенным выше формулам. И наоборот, если возникнут трудности с намоткой самодельных катушек, в качестве L3 также можно применить готовый импортный дроссель 8,2 мкГн. Наш коллега Г.Глухов (RU3DBT) при изготовлении этого приемника пошел таким путем (рис.5) и отмечает вполне удовлетворительную стабильность частоты ГПД .

В качестве дросселя L 4 годится любой готовый индуктивностью в пределах 70-200 мкГн, но можно применить и самодельный, намотав на ферритовом колечке диаметром 7-10 мм проницаемостью 600-2000 20-30 витков (большее число витков соответствует меньшим значения диаметра и/или проницаемости).

Налаживание. Правильно смонтированный приемник с исправными деталями начинает работать, как правило, при первом же включении. Тем не менее, полезно провести все операции по наладке приемника в последовательности, изложенной ниже. Все регуляторы надо поставить в положение максимального сигнала, а сердечники катушек в L7, L8 в среднее положение. Сначала с помощью мультиметра, включенного в разрыв питания, проверяем, что потребляемый ток не превышает 12-15 мА, в динамике должен прослушиваться собственные шумы приемника. Далее, переключив мультиметр в режим измерения постоянного напряжения, измеряем напряжения на всех выводах микросхем DА1, DA2 - они должны соответствовать приведенным в таблице 1.

Таблица 1

Напряжение,В

№вывода DA1

Напряжение,В

№вывода DA2

Напряжение,В

Проведем простейшую проверку общей работоспособности основных узлов.

При исправном УНЧ прикосновение руки к выводу 3 DA2 должно вызывать появление в динамике громкого, рычащего звука. Прикосновение руки к общей точке соединения С27,R19,R20 должно привести к появлению такого же по тембру звука, но заметно меньшей громкости - это включилась в работу АРУ.

Проверяем токи стоков ДПТ по падению напряжения на истоковых резисторах R9 и R16, если оно превышает 0,44 В, т.е. ток стока ДПТ превышает 2 мА, нужно увеличивая сопротивление истоковых резисторов добиться уменьшения тока до уровня порядка 1-1,5 мА.

Для установки расчетной частоты второго гетеродина снимаем технологическую перемычку (джампер) J2 и вместо нее к этому разъему подключаем частотомер. При этом VT4 выполняет функцию развязывающего (буферного) усилителя сигнала второго гетеродина, что практически полностью устраняет влияние частотомера на точность установки частоты. Это удобно не только на этапе налаживания, но в дальнейшем, в процессе эксплуатации, позволит проводить оперативный контроль, а при необходимости и подстройку, частот гетеродинов без полной разборки приемника. Требуемой частоты добиваемся подбором С24 (грубо) и подстройкой триммера С23(точно). Возвращаем на место перемычку (джемпер) J2 и аналогично, подключив частотомер вместо технологической перемычки (джампера) J1 проводим проверку, а при необходимости и укладку (подстройкой индуктивности L3), диапазона перестройки ГПД, который должен быть не уже 3980-4320 кГц. Если диапазон перестройки ГПД окажется излишне широк, что вполне вероятно при использовании КПЕ с большей максимальной емкостью, последовательно с ним можно включить дополнительный растягивающий конденсатор, требуемую емкость которого надо будет подобрать самостоятельно.

Для настройки в резонанс входной и выходной обмоток возбуждения ЭМФ подают (через конденсатор емкостью 20...100 пФ) с ГСС на первый затвор транзистора VT1 немодулированный сигнал частотой, соответствующую середине полосы пропускания ЭМФ (в авторском варианте - 500 кГц) и подбором величины конденсаторов С12, С22 (грубо) и точной подстройкой триммерами С15, С19 по максимуму выходного сигнала. При этом, во избежание срабатывания АРУ, уровень сигнала ГСС поддерживают таким, чтобы сигнал на выходе УНЧ не превышал 0,4 Вэфф. Как правило, для ЭМФ неизвестного происхождения неизвестна даже ориентировочная величина резонансной емкости, а она, в зависимости от типа ЭМФ, может быть в пределах от 62 до 150 пФ. Можно существенно облегчить настройку, если предварительно измерить индуктивность обеих катушек ЭМФ, например, посредством простой приставки .

Тогда резонансную емкость для каждой катушки (а индуктивность их отнюдь не одинакова, разница может достигать 10%, так в моем экземпляре ЭМФ индуктивность составила 840 и 897 мкГн) легко определим по формуле

С[пФ]=101320/L[мкГн].

Если значения контурных элементов ПДФ соответствуют указанным на схеме с точностью не хуже +-5%, дополнительной настройки не требуется. При самодельных катушках настройку ПДФ можно сделать по стандартной методике с использованием ГСС.

Для нормальной работы приемника на диапазоне 80 м желательно подключить наружную антенну длиной не менее 10-15 м. при питании приемника от батарей полезно подключить заземление или провод противовес такой же длины.

Хорошие результаты дает использование в качестве заземления металлических труб водоснабжения, отопления или арматуры балконного ограждения в панельных железобетонных зданиях.

Литература.

1. Форум «Простой приемник наблюдателя с ЭМФ»

2. Шульгин К. Основные параметры дисковых ЭМФ на частоту 500кгц. — Радио, 2002, №5, с.59-61.

3. Беленецкий С. Двухдиапазонный КВ приемник «Малыш». — Радио, 2008, №4, с.51, №5, с.72. http://www.cqham.ru/trx85_64.htm

4. Беленецкий С. Приставка для измерения индуктивности в практике радиолюбителя. — Радио, 2005, №5, с.26—28. http://www.cqham.ru/ot09_2.htm

Сергей Беленецкий (US5MSQ)

Начинающему радиолюбителю - коротковолновику, на первом этапе, требуется КВ-радиоприёмник, при помощи которого можно наблюдать за работой других радиолюбителей. Желательно, чтобы это было очень простое устройство, выполненное на самой доступной элементной базе, простое в настройке, но обеспечивающее неплохие характеристики.

Описываемый в данной статье приемник как раз из таких. Он выполнен по очень простой схеме на самой доступной, на сегодняшний день, элементной базе. Приемник построен по схеме прямого преобразования. Он принимает телеграфные и телефонные радиолюбительские станции (CW и SSB).

Приемник, в принципе, может работать в любом из радиолюбительских КВ-диапазонов, - все зависит от параметров входного и гетеродинного контура. В статье приводятся данные этих контуров для диапазонов 160М, 80М и 40М. На других диапазонах приемник не испытывался.

Принципиальная схема приемника

Чувствительность приемника около 8 mkV, работает он на несогласованную антенну, представляющую собой отрезок монтажного провода, протянутый по диагонали комнаты под потолком. Роль заземления выполняет труба водопроводной или отопительной системы дома. К трубе при помощи металлического хомута крепится контакт, провод от этого контакта подключается к клемме Х4, а снижение антенны - к Х1.

Принципиальная схема показана на рисунке 1. Входной сигнал выделяется контуром L1-С1, который настроен на середину принимаемого диапазона. Далее сигнал поступает на смеситель, выполненный на двух транзисторах VT1 и VT2, в диодном включении, включенных встречно-параллельно.

Напряжение гетеродина подается на смеситель через конденсатор С2 от гетеродина выполненного на транзисторе /Т5. Гетеродин работает на частоте в два раза ниже частоты входного сигнала.

Рис.1. Принципиальная схема КВ приемника на пяти транзисторах КТ315.

На выходе смесителя, в точке подключения С2 образуется продукт пребразования, - сигнал разности входной частоты и удвоенной частоты гетеродина. Поскольку, величина частоты этого сигнала не должна быть более 3 кГц, то после смесителя включен ФНЧ на дросселе L2 и конденсаторе С3, подавляющий сигналы частотой выше 3 кГц.

Благодаря этому достигается высокая избирательность приемника и возможность приема CW и SSB. Сигналы AM и FM практически не принимаются, но это к не нужно, так как в любительских диапазонах, в основном используются CW и SSB.

Выделенный НЧ сигнал поступает на двухкаскадный низкочастотный усилитель на VT3 и VT4, на выходе которого включаются высокоомные головные электромагнитные телефоны типа "ТОН-2". Низкоомные динамические телефоны можно подключать только через переходной трансформатор, например, от однопрограммной радиотрансляционной точки.

Если параллельно С7 включить резистор сопротивлением 1-2 кОм, то сигнал с коллектора VT4 через конденсатор емкостью 0,1-10 мкФ можно подать на вход любого УНЧ с динамиком и регулятором громкости. Тогда будет возможно громкоговорящее прослушивание. Напряжение питания гетеродина стабилизировано стабилитроном VD1.

Детали и конструкция

В приемнике можно использовать разные переменные конденсаторы, например, с перестройкой емкости 10-495 пф, 5-240 пФ или 7-180 пФ. Желательно чтобы это были конденсаторы с воздушным диэлектриком, но можно и с твердым.

Для намотки контурных катушек используются каркасы диаметром 8 мм с резьбовыми подстроечными сердечниками из карбонильного железа. Заготовкой для каркасов служат каркасы контуров ПЧ старых ламповых или лампово-полупроводниковых телевизоров (УЛТ, УНТ, УЛППТ и др.). Каркасы разбираются, разматываются и от них отпиливается цилиндрическая часть по длине 30 мм.

Каркасы устанавливаются в отверстия в печатной плате приемника и фиксируются там густым эпоксидным клеем клеем. Схематическое изображение каркаса с катушкой и способ его крепления приводится на рисунке 2.

Рис.2. Конструкции и крепление катушек.

На этом же рисунке показан способ крепления катушки L2, выполненной на ферритовом кольце. Эта катушка тоже крепится через отверстие в плате, но посредством винта М3 с гайкой, который вставляется в отверстие кольца. Под винт подкладывается изоляционная шайба.

Рис.3. Печатная плата КВ приемника на транзисторах Кт315.

Рис. 4. Расположение деталей на плате КВ приемника.

Теперь намоточные данные. Как уже отмечалось выше, намоточные данные приводятся для трех диапазонов (см. таблицу). Кроме намоточных данных приводится для трех диапазонов и данные емкостей С1, С9, С8.

Кроме того, емкость С8 приводятся для разных переменных конденсаторов. Если имеющийся в вашем распоряжении переменный конденсатор не такой емкости, как указано в таблице (10-495, 5-240 или 7-180), то выбирайте данные по наиболее близкой максимальной емкости. Например, если есть конденсатор 7-270 пФ, то берите данные емкости для переменного конденсатора 5-240 пф.

Намотка катушек L1 и L3 выполняется виток к витку, проводом ПЭВ 0,12. Фиксируются обмотки каплями расплавленного парафина (от свечки).

Катушка L2 - намотана на ферритовом кольце диаметром 10-20 мм, она содержит 200 витков, намотанных в навал, но равномерно. Катушку L2 можно намотать и на другом сердечнике, например, на СБ. В этом случае, её наматывают на каркасе СБ и затем помещают его внутрь броневых чашек СБ. Чашки склеивают эпоксидным клеем, им же клеят катушку к плате.

Конденсаторы С1, С8, С9, С11, С12, С13 должны быть керамическими, трубчатыми или дисковыми. Если это импортные дисковые конденсаторы, то нужно знать как обозначается их емкость, - первые две цифры обозначают емкость, а третья - множитель. Множитель обозначается цифрами 1, 2, 3, 4.

Если 1 = х10, 2 = х100, 3 = х1000, 4 = Х10000.

Например, "47" - 47 пф, "471" - 470 пф, ”472" -4700 пф, "473” - 47000 пф (0,047т), ”474" - 0,47m.

Печатная плата сделана из фольгированного стеклотекстолита. Расположение печатных дорожек только с одной стороны. Рисунок дорожек и монтажная схема приводятся на рисунках 3 и 4.

Налаживание

Низкочастотный усилитель приемника, при безошибочном монтаже и исправных деталях работает сразу после первого включения. Режимы работы транзисторов VT3-VT4 устанавливаются автоматически, так что налаживания УНЧ не требуется. Поэтому, в основном, налаживание приемника заключается в налаживании гетеродина.

Сначала нужно проверить наличие генерации по наличию ВЧ напряжения на отводе катушки L3. Ток коллектора VT5 должен быть в пределах 1,5-3 мА (устанавливается резистором R4). Генерацию можно проверить по изменению этого тока при прикосновении руками к гетеродинному контуру.

Подстройкой гетеродинного контура нужно обеспечить нужное перекрытие гетеродина по частоте, на диапазоне 160 М частота гетеродина должна перестраиваться в пределах 0,9-0,99 МГц, на диапазоне 80М -1,7-1,85 МГц, на диапазоне 40М - 3,5-3,6 МГц. Проще всего это сделать измеряя частоту на отводе катушки L3 при помощи частотомера, способного измерять частоту до 4 МГц. Но можно воспользоваться и резонансным волномером или генератором ВЧ (методом биений).

Если вы пользуетесь генератором ВЧ, то можно одновременно настроить и входной контур. Полайте на вход приемника сигнал от ГВЧ (например, расположите провод, подключенный к Х1 рядом с выходным кабелем генератора).

Генератор ВЧ нужно перестраивать в пределах частот в два раза больших, чем указано выше (например, на диапазоне 160М - 1,8-1,98 МГц), а контур гетеродина подстроить так, чтобы при соответствующем положении СЮ в телефонах прослушивался звук частотой около 0,5-1 кГц. Затем, настройте генератор на центральную частоту диапазона, настройте на неё приемник и подстройте контур L1-С1 по максимальной чувствительности приемника. По тому же генератору откалибруйте шкалу приемника.

Откалибровать шкалу приемника можно и по частотомеру, измеряя частоту на отводе L3 и умножая показания частотомера на 2. При отсутствии генератора ВЧ входной контур можно настроить принимая сигнал радиолюбительской станции, работающей ближе к середине диапазона.

В процессе настройки контуров может потребоваться небольшая корректировка числа витков катушек L1 и L3 или емкостей С1 и С9.

Приемник начинающего коротковолновика-наблюдателя работает в диапазонах 28; 21; 14,0; 7,0; 3,5 МГц и предназначен для приема радиостанций, работающих телефоном и телеграфом.

Основными узлами приемника являются: преобразователь на лампе Л1 (6А10С), сеточный детектор Л2 (6К3) с обратной связью и двухкаскадный усилитель низкой частоты Л3 (6Н7С).

Рис.1. Принципиальная схема приемника

Для облегчения изготовления приемника начинающими коротковолновиками входные контуры в процессе приема радиостанции не перестраиваются. Заметного ослабления чувствительности на краях диапазона не наблюдается. В преобразователе применен одиночный контур ПЧ, на который для увеличения чувствительности и избирательности приемника подается положительная обратная связь. С целью устранения помех по зеркальному каналу ПЧ выбрана высокой 1600 кГц.

Необходимый режим работы лампы Л1 по экранирующей сетке, при котором получается устойчивая работа гетеродина, подбирается сопротивлением R2. R3 и C8 выполняют функции гридлика.

Величина обратной связи регулируется потенциометром R9, включенным в цепь экранирующей сетки лампы детекторного каскада. При приеме дальних станций, работающих телефоном, величину обратной связи следует устанавливать близкой к критической; при приеме станций, работающих телеграфом, - выше критической.

Детали и конструкция

Катушки индуктивности намотаны на картонных каркасах диаметром 10 мм и длиной 40 мм.

Рис.2. Чертеж катушек индуктивности L1-L5

Рис.3. Чертеж катушек индуктивности L6-L10

Катушка L12 должна иметь возможность передвигаться относительно катушки L11. Расстояние между ними подбирается опытным путем. Катушки L11 и L12 заключены в медный или алюминиевый экран. В верхней части экрана закреплена гайка (на рисунке не показана), в которой вращается винт ферритового сердечника. С помощью этого сердечника можно производить настройку контура L11, L12.

Рис.4. Чертеж катушек индуктивности L11-L12

Трансформатор Тр1 намотан на сердечнике Ш15, толщина набора 20 мм. Обмотка 1 содержит 3000 витков провода ПЭЛ 0,12; обмотка 2 - 70 витков провода ПЭЛ 0,4. Можно использовать готовый - от промышленного приемника "Воронеж". Силовой трансформатор также готовый с подходящими питающими напряжениями. Выпрямитель должен обеспечивать ток не менее 25 мА при напряжении 230...250 В.

Налаживание приемника

Налаживание приемника несложно. Низкочастотная часть и сеточный детектор обычно начинают работать сразу. Если при увеличении напряжения на экранирующей сетке лампы Л2 генерация не возникнет, следует уменьшить расстояние между катушками L11 и L12. При отсутствии генерации и в этом случае, необходимо переключить концы у обмотки обратной связи L12 или перевернуть ее. Если генерация будет возникать при среднем положении движка потенциометра R9, регулировку детекторного каскада можно считать законченной.

При настройке преобразовательного каскада сначала необходимо проверить, работает ли гетеродин. Если гетеродин работает, то при закорачивании лепестка 8 лампы Л2 на катод, падение напряжения на R1 возрастает. В случае отсутствия генерации следует более тщательно подобрать напряжение на экранирующей сетке Л1 путем изменения величины R2.

Изменение границ диапазонов осуществляется изменением емкости С12-С16 и более тщательным подбором числа витков катушек L6-L10.

Включив диапазон 40 м и присоединив к приемнику антенну, пытаются принять какую-либо радиостанцию. Затем, вращая винт сердечника L11 и подстраивая конденсатор С5, добиваются максимальной громкости приема.

Мы применим КВ конвертер, в результате чего получится коротковолновый супергетеродин с двойным преобразованием частоты с переменной первой ПЧ и кварцованным первым гетеродином. Такое решение при относительно низкой ПЧ обеспечивает не только хорошую селективность как по соседнему каналу, так и зеркальному каналу во всём КВ диапазоне, но и высокую стабильность частоты настройки. Благодаря чему подобная структура построения КВ приёмников (и трансиверов, например легендарный UW3DI) была очень популярна в досинтезаторную эпоху. Поскольку расширение числа КВ диапазонов такого приёмника ограничивается только наличием кварцев для первого гетеродина на нужные частоты, что как и в былые времена, так, к сожалению, и сейчас, в нынешних непростых экономических условиях, представляет определённую проблему, был разработан конвертер, охватывающий основные КВ диапазоны всего на одном (максимум – на двух) кварцевых резонаторах. Подобное решение уже было мной реализовано в двухламповом супергетеродине и показало хорошие результаты.

Принципиальная схема первого варианта КВ конвертера приведена на рис.2. и многим уже знакома, т.к. фактически представляет собой адаптацию под полупроводники уже знакомую нам по указанной выше публикации лампового конвертера.

Это четырёхдиапазонный конвертер, обеспечивающий приём на диапазонах 80,40,20 и 10м. Причем на 80м он выполняет функции резонансного УВЧ, а на остальных – конвертера с кварцованным гетеродином. Гетеродин, стабилизированный всего одним недефицитным кварцем 10,7Мгц (допустима резонансная частота в диапазоне 10,6-10,7МГц без существенных отличий в работе), работает на 40м и 20м на основной гармонике кварца, а на 10м диапазоне на третьей его гармонике (32,1МГц). Шкала может быть простая механическая шириной 500кГц на диапазонах 80 и 20м — прямая, а 40 и 10 – обратная (подобно применённой в UW3DI). Чтобы обеспечить указанные на схеме диапазоны частот, диапазон перестройки базового однодиапазонного приёмника, описанного в первой части статьи выбран равным 3,3-3,8 Мгц.

Сигнал с антенного разъема XW1 подается на регулируемый аттенюатор, выполненный на сдвоенном потенциометре 0R1 и далее через катушку связи L1 поступает на двухконтурный полосовой диапазонный фильтр (ПДФ) L2C3С8, L3C19 с емкостной связью через конденсатор С12. В виду того, что с приемником может применяться антенна любой, случайной длины, да и при регулировке аттенюатором сопротивление источника сигнала на входе ПДФ может меняться в широком диапазоне, чтобы получить в таких условиях достаточно стабильную АЧХ, по входу ПДФ установлен согласующий резистор R1. Переключение диапазонов производится галетным переключателем SA1. В положении контактов, показанном на схеме, включен диапазон 28 МГц. При переключении на 14 МГц к контурам подключаются дополнительные контурные конденсаторы С2,С7 и С16,С18, смещающие резонансные частоты контуров на середину рабочего диапазона и дополнительный конденсатор связи С11. При переключении на диапазон 7 МГц подключаются дополнительные контурные конденсаторы С1,С6 и С15,С17, смещающие резонансные частоты контуров на середину рабочего диапазона и дополнительный конденсатор связи С10. При переключении на диапазон 3,5 МГц к контурам ПДФ подключаются соответственно конденсаторы С5,С14 и С9. Для расширения полосы на 80 м диапазоне введен резистор R4. Этот четырёхдиапазонный ПДФ рассчитан на применение большой, полноразмерной антенны и сделан по упрощенной схеме всего на двух катушках, что оказалось возможным благодаря нескольким особенностям — верхние диапазоны, где требуется бОльшие чувствительность и селективность — узкие (меньше 3%), нижний 80 м, где очень высок уровень помех и вполне достаточно чувствительности порядка 3-5мкВ — широкий (9%). Применённая схема имеет самый большой коэффициент передачи по напряжению на 28 Мгц с почти пропорциональным частоте снижением в сторону 3,5 Мгц, чем уменьшается некоторая избыточность усиления на нижних диапазонах.

Гетеродин приемника выполнен по схеме емкостной трёхточки (вариант Колпитца) на транзисторе VT1, включённом с ОЭ. В этой схеме генерация колебаний возможна только при индуктивном сопротивлении цепи резонатора, т.е. частота колебаний находится между частотами последовательного и параллельного резонансов, причём это условие справедливо как на частоте основного резонанса кварца, так и на его нечётных гармониках. При генерации на основной частоте 10,7 Мгц (на диапазонах 40 и 20 м) контур гетеродина состоит из кварцевого резонатора ZQ1 и конденсаторов С4,С13. На 10м диапазоне секцией переключателя SA1.3 в цепь коллектора VT1 вместо нагрузочного резистора R3 подключается дроссель L3 индуктивностью 1 мкГн, образующий совместно с С13, емкостью коллекторного перехода VT1 и монтажной ёмкостью параллельный резонансный контур, настроенный на частоту третьей гармоники кварца (примерно 32,1 Мгц), чем обеспечивается активация кварца на третьей гармонике. Резистор R2 определяет и достаточно жестко задаёт (за счет глубокой ООС) режим работы транзистора VT1 по постоянному току. Цепочка С22R6C24 защищают общую цепь питания от проникновения в неё сигнала гетеродина.

Выделенный ДПФ сигнал подается на смеситель — первый затвор полевого транзистора VT2. На второй его затвор поступает через конденсатор С20 напряжение гетеродина величиной порядка 1…3 Вэфф (диапазоне 80м питание на гетеродин не подаётся и транзистор VT2 работает в типовом режиме резонансного УВЧ). В качестве резонансной нагрузки в сток VT2 подключается полная обмотка катушки связи L1 базового приёмника (см. схему рис.1), на которой и выделяется сигнал 1-й промежуточной частоты (3300 — 3800 кГц).

Секция SA1.4 переключателя диапазоном коммутирует частоту опорного гетеродина (сигнал USB) т.о.,чтобы обеспечивался традиционный для радиолюбительских диапазонов приём верхней боковой полосы на диапазонах 80 и 40м и нижней — на диапазонах 10 и 20 м. Напряжение питания конвертера +9в стабилизировано интегральным стабилизатором DA1.

Если есть возможность приобрести современный малогабаритный кварц на основную частоту (первую гармонику) 24,7-24,8 МГц, то можно сделать конвертер на 5 диапазонов (см. рис.3).
Небольшие изменения коммутации выводов переключателя диапазонов SA1 связаны в основном с введением пятого диапазона. Для подключения цифровой шкалы (ЦШ) Макеевская предусмотрен буферный усилитель VT3 и пятая секция переключателя SA1.5 (на схеме рис.3 не показана), управляющая режимом счёта ЦШ. Схема получилась на вид проста, но… только представьте себе, сколько нужно нужно будет пустить проводов только между пятью секциями переключателем SA1 и платой!

При повторении описанных конвертеров нужно соблюдать традиционные правила монтажа ВЧ устройств и обеспечить минимальную длину (не более 4-5 см) проводников, соединяющих конвертер с секциями SA1.1, SA1.2 и SA1.3, дабы минимизировать вносимые ими в резонансные контура реактивности (при монтаже в виде «паутинки-путанки» это в основном индуктивность), что может существенно осложнить настройку контуров на верхних диапазонах. Именно несоблюдение этих правил было причиной неудач некоторых коллег при изготовлении лампового супера на печатных платах.

Дабы упростить конструкцию и обеспечить её хорошую повторяемость была разработана универсальная конструкция 4/5 диапазонного конвертера с электронной коммутацией диапазонов, принципиальная схема которого приведена на рис.4.

Не пугайтесь! 🙂 Основа конвертера осталась та же. Большее количество дополнительных деталей – это плата за универсальность применения и электронное управление переключением диапазонов. Для четырёхдиапазонного (однокварцевого) варианта устанавливаются все элементы, кроме показанных оранжевым цветом, а для двухкварцевого варианта устанавливаются все элементы, кроме показанных зелёным цветом. Коммутация диапазонов ПДФ производится при помощи реле К1-К4, управляемых односекционным галетным переключателем SA1 (т.е. всего 5 заземлённых по ВЧ проводов). Переключение режима работы и частоты генерации первого гетеродина производится транзисторными ключами VT2,VT3, управляемыми резистивным дешифратором R14,R17,R18,R19. Управление режимом счёта ЦШ производится диодным дешифратором VD3,VD5,VD6,VD7,VD10, переключением принимаемой боковой — диодным дешифратором VD4,VD8,VD9. Эти алгоритмы управления показаны в таблицах на рис.5.

Там же отражены особенности подключения цифровой шкалы Макеевская. В старом варианте ЦШ (см. описание ), которая применяется в авторском варианте, для установки требуемой формулы счёта (см. рис.5) в трёхвходовом режиме применяются два управляющих сигнала F8 и F9. В современной версии ЦШ Макеевская со светодиодными индикаторами под названием «Уникальная LED» (см. описание ) сохранена преемственность управления режимом счёта и соответствующие выводы называются К1 и К2 (показаны в скобках на схеме рис.4). Но в современной экономичной версии ЦШ Макеевская с ЖК индикаторами под названием «Уникальная LCD» (см. описание ) предусмотрено управление режимом счёта только по одному выводу, переключающему либо режим сложения либо вычитания всех аргументов (т.е. измеренных частот трёх генераторов), но нужную нам формулу счёта можно заранее запрограммировать и сохранить в энергонезависимой памяти — в нашем случае (см. таблицу рис.6) надо указать, что аргумент F3 всегда отрицательный. Такое же одновыводное управление режимом счёта поддерживает и ЦШ «Уникальная LED», так что при желании её можно запрограммировать и подключить так же, как и ЦШ «Уникальная LCD».

Конструкция конвертера . Все детали конвертера смонтированы на плате из одностороннего фольгированного стеклотекстолита размером 75х75 мм. Её чертёж в формате lay можно . С целью уменьшения размеров, плата рассчитана на установку в основном SMD компонентов – резисторы типоразмера 1206, а конденсаторы 0805, электролитические импортные малогабаритные. Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные. Реле с рабочим напряжением 12 В малогабаритные импортные на 2 группы переключения широко распространённого типоразмера, выпускаемые под разными названиями — N4078, HK19F, G5V-2 и т.п. В качестве VT1,VT5 можно применить практически любые кремниевые n-p-n транзисторы с коэффициентом передачи тока на менее 100, BC847- ВС850, MMBT3904, MMBT2222 и т.п, в качестве VT2,VT3 можно применить практически любые кремниевые p-n-p транзисторы с коэффициентом передачи тока на менее 100, BC857- ВС860, MMBT3906 и т.п. Диоды VD1-VD10 можно заменить на отечественные КД521, КД522. Катушки приемника L1-L4 выполнены на каркасах диаметром 7,5-8,5 мм с подстроечником СЦР и штатным экраном от контуров ПЧ блока цветности советских цветных телевизоров. Катушки L2-L3 содержат по 13 витков провода ПЭЛ, ПЭВ диаметром 0,13-0,3 мм, намотанных виток к витку. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 2 витка, а катушка связи L4 наматывается поверх нижней части катушки L3 и содержит 7 витков такого же провода. Дроссель L5, применяемый в однокварцевом варианте, малогабаритный импортный (зелёный полосатик). При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственно, подкорректировав чертеж печатной платы под новый конструктив. Фото собранной платы.

Настройка тоже достаточно проста и стандартна. После проверки правильности монтажа и режимов по постоянному току подключаем к эмиттеру VT5 (разъём J4) для контроля уровня напряжения гетеродина ламповый вольтметр переменного тока (если нет промышленного, можно применить простейший диодный пробник, подобно описанный в ) или осциллограф с полосой пропускания не менее 30 Мгц с малоёмкостным делителем (высокоомным пробником), в крайнем случае – подключить его через малую емкость.

Переключившись на диапазоны 40 и 20м проверяем наличие переменного напряжения уровнем порядка 1-2 Вэфф. Аналогично проверяем работу гетеродина на диапазонах 15 и 10м. Это для двухкварцевого варианта, если же делаем однокварцевый (четырёхдиапазонный) вариант, то включаем 10м диапазон и подстройкой С25 добиваемся максимального напряжения генерации – оно должно быть примерно такого же уровня. Затем подключив к разъёму J4 частотомер (ЦШ) проверяем частоты генерации гетеродина на соответствие данным в таблице, приведённым на рис.5.

При наличии приборов типа АЧХ-метра или ГСС, а лучше NWT, настройку ПДФ лучше сделать автономно от базового приемника. Для этого временно замыкаем проволочной перемычкой резистор R5, дабы нам не мешал сигнал гетеродина, на разъём J2 подключаем нагрузочный резистор 220 ом, а нему вход NWT (или индикатора выхода, например осциллограф с полосой пропускания не менее 30 МГц с малоёмкостным делителем (высокоомным пробником) чувствительностью не хуже десятков мВ). На антенный вход подключаем выход NWT (ГСС или АЧХ-метра). Для корректности измерений его выходной уровень выставляем такой, чтобы не было заметной перегрузки двухзатворного транзистора, работающего в данном случае в качестве УВЧ. Отсутствие перегрузки можно определить по неизменности АЧХ при уменьшении сигнала например на 10 дБ или, в случае применения ГСС, пропорциональность изменения его выходного уровня изменению входного, пусть на те же 10 дБ. Такую проверку (на отсутствие перегрузки измерительного тракта) рекомендуется регулярно выполнять , дабы не наступать на типичные для начинающих грабли.

И переходим к настройке ПДФ, начиная c 80м диапазона. Регулировкой подстроечников катушек L2,L3 добиваемся требуемой АЧХ на экране (если настраиваем посредством ГСС, то выставляем на нём среднюю частоту диапазона 3,65 Мгц и добиваемся максимума выходного сигнала). Затем переходим к настройке ПДФ на других диапазонах, начиная с 10м, но сердечники катушек больше не трогаем! А подстраиваем соответствующие диапазонам триммеры – на диапазоне 10м — это С5,С20, 15м — С10,С19, 20м — С9,С18, и 40м – С8,С17.

Схема межблочных соединений представлена на рис.6. Питание ЦШ +5В обеспечивает внешний интегральный стабилизатор 0DA1, закрепленный для лучшего охлаждения на металлический корпус приемника. Фильтр 0С2,0R3 обеспечивает развязку по питания ЦШ и уменьшает нагрев стабилизатора 0DA1 при использовании ЦШ со светодиодными индикаторами, потребляющую до 200 мА. При подключении экономичной ЦШ «Уникальная LCD», потребляющей всего 18 мА, рекомендуемые номиналы фильтра указаны в скобках, а допустимую мощность рассеяния резистора 0R3 можно уменьшить до 0,125 Вт. После подключения конвертера (если платы настраивались отдельно друг от друга) к базовому приемнику нужно проверить не ушло ли сопряжение первого контура 1-й ПЧ (на катушке L2 рис.1.) и при необходимости его подстроить по методике, изложенной в первой части статьи. Это лучше сделать на каком-нибуль широком диапазоне, например на 10 или 15м, дабы ПДФ существенно не ограничивал полосу пропускания всего ВЧ/ПЧ тракта приёмника при перестройке по всему диапазону 1-й ПЧ.

Фото внешнего вида собранного пятидиапазонного приемника

фото его монтажа:

Правильно настроенный приемник имеет чувствительность при с/ш=10дБ не хуже (вероятно заметно лучше, но точнее сейчас имеющейся аппаратурой померить не могу) 0,4 мкВ (10м) до 2 мкВ (80м). Длительное время приемник был в обкатке с суррогатной антенной (метров 15 провода с 4-го этажа на дерево), мне нравится, как он работает. Благодаря замечательному ГДР-ровскому ЭМФ звучит сочно и красиво (пока не мешают соседи по частоте 🙂), эффективно (аттенюатором практически не пользуюсь) и мягко работает АРУ, частота ГПД без каких-либо работ по термостабилизации достаточно стабильна, начальный выбег менее 1 кГц, поэтому сразу по включении срабатывает ЦАПЧ Макеевской и можно без всякого прогрева пользоваться приемником — частота стоИт, как вкопанная, при любых переключениях диапазонов.

Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме

С. Беленецкий, US5 MSQ г.Киев, Украина

Приемники. приемники 2 приемники 3

Гетеродинный приемник на диапазон 20 м "Практика"

Ринат Шайхутдинов, г. Миасс

Катушки приёмника намотаны на стандартных четырехсекционных каркасах с габаритами 10х10х20 мм от катушек портативных приёмников и снабжены ферритовыми подстроечными сердечниками диаметром 2,7 мм из материала

30ВЧ. Все три катушки намотаны проводом ПЭЛШО (лучше) или ПЭЛ 0,15 мм. Катушка L1 содержит 4 витка, L2 – 12 витков, L3 – 16 витков. Витки равномерно распределяют по секциям каркаса. Отвод катушки L3 сделан от 6-го витка, считая от вывода, соединённого с общим проводом. Катушки L1 и L2 наматывают так: сначала в нижнюю секцию каркаса катушку L1, затем в три верхних секции – по 4 витка контурной катушки L2. Данные катушек указаны для диапазона 20 метров и ёмкости контурных конденсаторов С1 и С7 по 100 пФ. При желании изготовить этот приёмник на другие диапазоны полезно руководствоваться следующим правилом: Ёмкость контурных конденсаторов

изменяют обратно пропо рционально отношению частот, а число витков катушек – 28 обратно пропорционально корню квадратному из отношения частот. Например, для диапазона 80 метров (отношение частот 1:4) ёмкость конденсаторов надо

взять 400 пФ (ближайший номинал 390 пФ), число витков катушек L1…3 соответственно 8, 24 и 32 витка. Разумеется, все эти данные ориентировочные и нуждаются в уточнении при настройке собранного приемника. Дроссель L4 на выходе УНЧ – любой фабричный, индуктивностью от 10 мкГн и выше. При отсутствии такового можно намотать 20…30 витков любого

изолированного провода на цилиндрический подстроечник диаметром 2,7 мм от контуров ПЧ любого приёмника (там используют феррит с проницаемостью 400 – 1000). Сдвоенный КПЕ использован от УКВ блоков промышленных радиоприёмников, такой же, как и в предыдущих конструкциях автора, уже опубликованных в журнале. Остальные детали могут быть любых типов. Эскиз печатной платы приёмника и размещение деталей показаны на рис. 2.

При разводке платы соблюдался принцип, полезный, а в некоторых случаях и настоятельно необходимый: оставлять между дорожками максимальную площадь общего проводника – «земли».

QRP приемник ПП на 40 метров

Ринат Шайхутдинов

Приемник показал хорошие результаты, обеспечив качественный прием многих любительских станций, поэтому была разработана печатная плата. Схема приемника претерпела небольшие изменения: на входе УЗЧ, выполненного на распространенной микросхеме LM386, установлен разделительный конденсатор.

Это повысило стабильность режима микросхемы и улучшило работу смесителя

Регулятором громкости с успехом служит входной аттенюатор. Данные катушек

были приведены в предыдущем номере, но, чтобы не искать, дадим их еще раз.

Каркасы катушек и КПЕ взяты от УКВ блоков, катушки подстраиваются

сердечниками 30ВЧ. L1 и L2 намотаны на одном каркасе, содержат 4 и 16 витков соответственно, L3 – также 16 витков, катушка гетеродина L4 – 19 витков с отводом от 6-го витка. Провод – ПЭЛ 0,15. Катушка ФНЧ L5 – импортная готовая, индуктивностью 47 мГн. Остальные детали – обычных типов. Транзистор 2N5486 можно заменить на КП303Е, а транзистор КП364 – на КП303А


Простой супергетеродин на 40 метров

Приемник из серии простейших, с минимальным количеством деталей, на диапазон 40 метров. Модуляция АМ-SSB-CW переключается выключателем BFO. В качестве селективного элемента применяется пьезоэлектрический фильтр на частоту 455 или 465 кгц. Катушки индуктивности рассчитываются одной из программ, размещенных на сайте или заимствуются из других конструкций.

Приемник "Проще некуда"

Приемник построен по супергетеродинной схеме с кварцевым фильтром и имеет чувствительность, достаточную для приема любительских радиосанций. Гетеродин приемника находится в отдельной металлической коробке и перекрывает диапазон 7,3-17,3 мгц. В зависимости от настройки входного контура диапазон принимаемых частот находится в интервале 3,3-13,3 и 11,3-21,3 мгц. USB или LSB (и втоже время плавная подстройка) перестраиваются резистором гетеродина BFO. При применении кварцевого фильтра на другие частоты-гетеродин следует переcчитать.

4-х диапазонный приемник прямого преобразования






КВ приемник от DC1YB

КВ приемник с преобразованием "вверх" построен по схеме с тройным преобразованием и перекрывает 300 кгц- 30 мгц. Принимаемый диапазон частот непрерывный. Дополнительная точная настройка позволяет принимать SSB и CW. Промежуточные частоты приемника 50,7 мгц, 10,7 мгц и 455 кгц. В приемнике применены дешевые фильтра на 10,7 мгц 15 кгц и промышленные 455 кгц. Первый ГПД перекрывает полосу частот от 51 мгц до 80,7 мгц. с помощью КПЕ с воздушным диэлектриком, но автор не исключает применения синтезатора.

Схема приемника

Простой КВ приемник

Экономичный радиоприемник

С. Мартынов

В настоящее время экономичность радиоприемников приобретает все большее значение. Как известно, многие промышленные приемники экономичностью не отличаются, а между тем во многих населенных пунктах страны долговременные отключения электроэнергии стали уже обычным явлением. Стоимость элементов питания при частой их замене также становится обременительной. А вдали от "цивилизации" экономичный радиоприемник просто необходим.

Автор данной публикации задался целью создать экономичный радиоприемник с высокой чувствительностью, способностью работать в диапазонах КВ и УКВ. Результат получился вполне удовлетворительный - радиоприемник способен работать от одного элемента питания

Основные технические характеристики:

Диапазон принимаемых частот, МГц:

  • КВ-1 ................. 9,5...14;
  • КВ-2............... 14,0 ... 22,5;
  • УКВ-1 ............ 65...74;
  • УКВ-2 ............ 88...108.

Селективность тракта AM по соседнему каналу, дБ,

  • не менее..................... 30;

Максимальная выходная мощность на нагрузке 8 Ом, мВт, при напряжении питания:

Чувствительность радиоприемника при правильной настройке...

Схема радиоприемника

Mini-Test-2band

Двухдиапазонный приемник предназначен для прослушивания работы радиолюбительских станций в режимах CW, SSB и АМ на двух, самых «ходовых» диапазонах 3,5 (ночном) и 14 (дневном) МГц. Приемник содержит не очень большое количество комплектующих, недефицитных радиодеталей, весьма прост в настройке, поэтому и имеет в своём названии слово «Мини». Он представляет собой супергетеродин с одним преобразованием частоты. Промежуточная частота фиксированная – 5,25 МГц. Эта ПЧ позволяет принимать два участка частот (основной и зеркальный) без переключающих элементов в ГПД. Смена диапазонов производится простым переключением радиоэлементов во входном фильтре. В приемнике применены новый, недавно разработанный усилитель ПЧ и улучшенная схема АРУ. Чувствительность приемника около 3 мкВ, динамический диапазон по забитию около 90дБ. Питается приемник напряжением +12вольт.

Mini-Test-many-band

Рубцов В.П. UN7BV. Казахстан. Астана.

Многодиапазонный приемник предназначен для прослушивания работы радиолюбительских станций в режимах CW, SSB и АМ на диапазонах 1,9; 3,5; 7,0; 10, 14, 18, 21, 24, 28 МГц. Приемник содержит не очень большое количество комплектующих, недефицитных радиодеталей, весьма прост в настройке, поэтому и имеет в своём названии слово «Мини», ну а на возможность принимать радиостанции на всех любительских диапазонах указывает слово «many». Он представляет собой супергетеродин с одним преобразованием частоты. Промежуточная частота фиксированная – 5,25 МГц. Применение этой ПЧ обусловлено малым наличием пораженных точек, большим усилением УПЧ на этой частоте (что несколько улучшает и шумовые параметры тракта), перекрытием диапазонов 3,5 и 14 МГц в ГПД одними и теми же подстроечными элементами. То есть, эта частота - есть «наследие» от предыдущего двухдиапазонного варианта приёмника «Mini-Test», оказавшимся весьма неплохим и в многодиапазонном варианте этого приёмника. В приемнике применен новый, недавно разработанный усилитель ПЧ, повышена чувствительность до 1 мкВ и в связи с повышением последней - улучшена работа системы АРУ, введена функция регулировки глубины АРУ.







2024 © sdelano-krasnodar.ru.