Штамповки из коррозионностойких, жаростойких и жаропрочных сталей и сплавов. Общие технические требования


Таблица 10

Технические данные абразивно - отрезного станка модели 8552 .

Абразивный материал выбирают в зависимости от вида разрезаемого металла. Для разрезки сталей или жаропрочных сплавов рекомендуют круги из электрокорунда. Зернистость выбирают в зависимости от режима работы и требуемых шероховатости и точности поверхности реза. Для разрезания сталей применяют круги с менее крупным зерном, чем для цветных металлов. Твердость круга должна быть такой, чтобы при работе абразивные зерна выкрашивались по мере затупления, образовывались новые режущие грани и обнажались новые зерна. Преимущества абразивной разрезки: высокая геометрическая точность и малая шероховатость поверхности, среза (R а = 0,32 - 1,25 мкм), возможность разрезки высокопрочных металлов любой твердости, высокая производительность .

4.7. Нагрев заготовок под штамповку

Процессы ковки и штамповки, осуществляемые при высоких температурах, можно рассматривать как совместные процессы ОМД и термического воздействия на них. Тепловые воздействия на металл приводит к потере им упругих свойств, существенному уменьшению его сопротивления деформации и к резкому повышению пластичности. В процессе горячей ОМД происходит снятие появляющихся напряжений, в частности при возврате и рекристаллизации металла.

Оптимальный режим штамповки должен обеспечить необходимые условия для успешного проведения процесса, а также высокое качество поковок, при котором вредное влияние тепла ограничивается. Поэтому термический режим разрабатывается для каждого сплава с учетом исходной структуры металла, его объёма, соотношения размеров заготовки и назначения поковки. Одной из главных задач при разработке технологического процесса является определение соответствующего температурного интервала, т. е. температуры начала и конца обработки металла. Для правильного выбора температурного интервала необходимо учитывать следующие факторы:

- Металл должен обрабатываться давлением в температурном интервале максимальной пластичности. Для этой цели для большинства сплавов построены диаграммы пластичности, представляющие собой совокупность температурных зависимостей прочностных и пластических характеристик сплава.

Металл необходимо деформировать в состоянии, соответствующем области твердого раствора сплава без малейших признаков перенагрева или пережога и желательно заканчивать деформацию при таких температурах, чтобы не происходило вторичных фазовых превращений. Для этих целей используется анализ диаграммы состояния сплава .

Деформацию следует производить при таких температурах, когда в процессе ее происходит измельчение структуры, а не рост зерен. Эта информация устанавливается при анализе диаграммы рекристаллизации сплава.

Для сплава ЭИ868 температурный интервал под горячую объемную штамповку составляет от 1130 до 1150 0 С . Для сплава ЭИ868 рекомендуется применять нагрев в электрической печи. Электронагрев по расходу энергии на тонну заготовок менее экономичен, чем нагрев в пламенных печах. Однако его широко применяют, так как он повышает производительность труда, позволяет провести полную автоматизацию и обеспечить высокую стабильность процесса, улучшить условия труда и сократить потери металла на окалинообразование .

Потеря металла в виде окалины при нагреве в печах электросопротивления составляет 0,2 - 0,4 % массы нагреваемого металла, что почти в десять раз меньше, чем при нагреве в пламенных печах. Уменьшение окалины повышает качество поковок и увеличивает стойкость штампов кузнечно-прессового оборудования. Технологические преимущества электронагревательных устройств особенно эффективны в серийном поточном производстве.

В данном технологическом процессе предлагается использовать карусельную нагревательную печь электросопротивления, температура в печи 1140 ± 5 0 С, количество заготовок в печи - 50 штук. Время нагрева одной садки около 1,15 часа при разогреве печи или 0,3 часа в условиях работы с предварительно нагретой печью. Температуру в печи контролируют с помощью оптического пирометра М90 - Р1 с записью в специальном журнале. В табл. 12 приведены технические характеристики карусельной нагревательной печи.

Таблица 12

Технические характеристики печи электросопротивления .

4.8. Горячая объемная штамповка

4.8.1. Определение потребного усилия пресса и выбор технологического оборудования

В новом варианте технологического процесса штамповка производится на винтовом фрикционном прессе. Свободный ход фрикционного пресса позволяет деформировать металл в каждом ручье штампа за несколько ударов. Достигаемая при этом дробная деформация может быть в сумме даже больше деформации эквивалентного кривошипного горячештамповочного пресса. Возможность использования нижнего выталкивателя значительно расширяет номенклатуру штампуемых изделий и позволяет работать с небольшими штамповочными уклонами, а в разъёмных по вертикали матрицах - даже без уклонов для полостей, "попадающих в плоскость разъёма. Фрикционные прессы имеют относительно большую скорость деформирования по сравнению с другими прессами, однако течение металла при штамповке на этих прессах аналогично штамповке на других прессах. В последние годы фрикционные прессы значительно модернизировали, они стали более быстроходными, а в некоторых конструкциях выполнено хорошее направление ползуна, что позволяет производить штамповку в многоручьевых штампах. В данном случае штампуется сразу две детали. В таблице 13 приведена техническая характеристика фрикционного пресса.

Определим потребное усилие пресса.


В таблице 13 приведены технические параметры фрикционного пресса, рекомендуемого для горячей объемной штамповки.


Таблица 13

Технические характеристики винтового фрикционного пресса.

4.8.2 Технология изготовления штампа и материалы для изготовления штампов

Штампы для горячей объемной штамповки работают в очень тяжелых условиях. Они подвергаются многократному воздействию высоких напряжений и температур. Интенсивное течение горячего металла по поверхности штампа вызывает истирание ручья, а также дополнительный нагрев инструмента. На поверхности ручья образуются так называемые разгарные трещины. Поэтому штамповые стали должны отличатся высокими механическими свойствами, сочетая прочность с ударной вязкостью, износостойкостью, разгаростойкостью и сохранять эти свойства при повышенных температурах.

Материалы для штампов должны хорошо прокаливаться при термообработке и обрабатываться на металлорежущих станках. Желательно, чтобы штамповая сталь не содержала дефицитных элементов и была дешевой.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает общие требования на штамповки из коррозионностойких, жаростойких и жаропрочных сталей и сплавов.

Стандарт не распространяется на штамповки дисков и лопаток.

По соглашению сторон по настоящему стандарту разрешается изготовление поковок, получаемых свободной ковкой.

Отражение специфических и дополнительных требований к штамповкам, поставляемым по настоящему стандарту, производится в специальных технических условиях, согласованных непосредственно между предприятием-поставщиком и предприятием-потребителем.

Рег. № ВИФС-4504 от 21/V-1975 г.

Разработан ВИАМ

Утвержден МАП - 14/IV-1975 г.

Срок введения с 1/I-1976 г.

Срок действия до 01.01.99 г.

Штамповки изготовляют из марок стали и сплавов, перечисленных в табл. и полученных в соответствии с заказом методом открытой выплавки, электрошлакового переплава, вакуумно-дугового переплава и другими методами.

При коренных изменениях технологии производства штамповок, о чем поставщик сообщает потребителю, или при изготовлении их новых видов, по требованию потребителя поставщик готовит опытную партию штамповок, по результатам исследований которой потребитель дает заключение, являющееся основанием для дальнейшего производства.

1. Классификация

3.2. Штамповки, в зависимости от марки стали, сплава поставляются в термически обработанном состоянии или без термообработки. Режимы термической обработки и твердость в состоянии поставки приведены в табл. .

3.3. Штамповки поставляются после травления или дробеструйной и других методов очистки.

Таблица 2

Твердость по Бринеллю (диам. отп.) не менее, мм

1Х13М

12Х13 (1Х13)

Нормализация, отпуск или отжиг

40Х10С2М (4Х10С2М, ЭИ107)

Отжиг при 1020 ± 20 ° С с выдержкой в течение 1 часа, охлаждение с печью до 750 ° С, выдержка 3 - 4 часа, охлаждение на воздухе

4,3 - 3,7

45Х14Н14В2М (4Х14Н14В2М, ЭИ69)

Отжиг при 810 - 830 ° С, охлаждение на воздухе

4,3 - 3,6

4Х14Н14СВ2М (ЭИ240)

4,7 - 3,9

Х16Н25М6АГ (ЭИ395)

Отжиг при 800 ± 10 ° С с выдержкой 5 часов, охлаждение на воздухе

40X15Н7Г7Ф2МС (4Х15Н7Г7Ф2МС, ЭИ388)

Отжиг

1Х15Н4АМ3-III (ЭИ310-III)

Отжиг или отпуск

07Х16Н6-III (Х16Н6-III, ЭП288-III)

Отжиг при 780 °С с охлаждением в печи или на воздухе до комнатной температуры и последующий нагрев до 680 ° С с охлаждением в печи или на воздухе; нормализация и отпуск

20X13(2X13),

30Х13(3Х13),

40Х13(4X13),

95X18 (9Х18, ЭИ229),

14Х17Н2(1Х17Н2, ЭИ268),

13Х14Н3В2ФР-III (1Х14Н3ВФР-III, ЭИ736-III),

13Х11Н2В2МФ-III (1Х12Н2ВМФ-III, ЭИ961-III,

20Х3МВФА (ЭИ415),

1Х12Н2МВФАБ-III (ЭП517-III)

По инструкции ВИАМ № 1029-75

Примечания : 1. С согласия потребителя разрешается поставка штамповок из стали, ЭИ69 б ез термической обработки.

2. Допускается поставка отдельных партий штамповок из стали ЭИ961-III с твердостью (диам. отп.) не менее 3,6 мм.

3.4. Механические свойства и длительная прочность, определяемые на образцах, вырезанных вдоль направления волокна, должны соответствовать требованиям табл. и .

3.4.1. При изготовлении штамповок из стали, сплавов, выплавляемых в вакуумно-индукционных печах и методами ВДП и ЭШП и поставляемых по техническим условиям, в которых показатели механических свойств выше, чем в табл. , механические свойства штамповок вдоль направления волокна должны соответствовать этим показателям.

3.5. При испытании образцов, вырезанных поперек направления волокна или по хорде, показатели механических свойств (удлинение, сужение, ударная вязкость) устанавливаются в СТУ на основании статистических данных результатов испытаний по указанной в них схеме вырезки образцов. При этом допускается их снижение по сравнению с нормами, установленными для образцов, вырезанных вдоль направления волокна, согласно данным, приведенным в табл. .

3.5.1. Для жаропрочных сталей марок ЭИ696, ЭИ696А, ЭИ835, ЭИ835-III снижение мехсвойств поперек направления волокна и по хорде не допускается.

3.6. На необрабатываемых поверхностях штамповок не должно быть трещин, неметаллических включений, волосовин, окалины и законов, видимых невооруженным глазом.

Допускается удаление указанных дефектов пологой зачисткой. Ширина зачистки должна быть не менее шестикратной глубины.

Глубина зачистки оговаривается в чертеже и, как правило, не должна выводить размеры штамповок за минимально допустимые размеры, указанные в чертеже.

Допускаются без зачистки отдельные местные дефекты в виде вмятин, мелкой рябизны и царапин, если их глубина, определяемая контрольной зачисткой, не выводит размеры штамповок за минимально допустимые размеры, указанные в чертеже.

Таблица 3

Относительное снижение показателей, % (не более)

Для образцов с поперечным направлением волокна

Для образцов с хордовым направлением волокна

Для металла, выплавленного в открытых печах

Для металла, выплавленного в вакуумных индукционных печах или методом электрошлакового или вакуумно-дугового переплава

Ударная вязкость

Относительное удлинение

Относительное сужение

Таблица 4

Режим термической обработки

Длительная прочность

Температура испытания, ° С

Постоянно приложенное напряжение, кгс/мм 2

Время до разрушения в часах, не менее

45Х14Н14В2М

(4Х14H14В2М, ЭИ69)

Отжиг при 810 - 830 ° С охлаждение на воздухе

10Х11Н20Т3Р

(Х12Н20Т3Р, ЭИ696)

Нагрев до 1100 - 1170 ° С, выдержка 2 часа, охлаждение на воздухе или в масле. Старение при 700 - 750 ° С в течение 15 - 25 ч, охлаждение на воздухе

Х12Н20Т2Р

(ЭИ696А)

Х16Н25М6АГ

(ЭИ395)

Закалка с 1160 - 1180 ° С в воду и старение при 700 ° С в течение 5 час.

40Х15Н7Г7Ф2МС

(4Х15Н7Г7Ф2МС, ЭИ388)

Закалка с 1170 - 1190 ° С в воду или на воздухе, выдержка 30 - 45 мин, старение при 800 ± 20 ° С в течение 8 - 10 часов

12Х25Н16Г7АР

(Х25Н16Г7АР, ЭИ835),

12Х25Н16Г7АР-III

(Х25Н16Г7АР-III, ЭИ835-III)

Закалка с 1050 - 1150 ° С, выдержка 30 мин - 1 час, охлаждение в воде или на воздухе

37Х12Н8Г8МФБ

(4Х12Н8Г8МФБ, ЭИ481),

37Х12Н8Г8МФБ-III

(4Х12Н8Г8МФБ-III, ЭИ481-III)

Закалка: нагрев до 1150 ± 10 ° С, выдержка 1 час 45 мин - 2 часа 30 мин, полное охлаждение в воде. Старение при 670 ° С в течение 16 часов, нагрев до 780 ± 10 ° С, выдержка 16 - 20 часов, охлаждение на воздухе

Примечания : 1. Повторные и арбитражные испытания из стали ЭИ395 проводят по режиму 700 ° - 18 кгс/мм 2 - 100 часов.

2. Вариант испытания штамповок из стали ЭИ835, ЭИ835-III, ЭИ481, ЭИ481-III на длительную прочность оговаривается в заказе. При отсутствии такого указания режим выбирается поставщиком.

3. Повторные и арбитражные испытания штамповок из стали ЭИ481 и ЭИ481-III проводятся по режиму:

650 ° - 35 кгс/мм 2 - 100 часов.

4. Штамповки из стали ЭИ69 на длительную прочность контролируются по требованию потребителя.

3.7. На обрабатываемых поверхностях штамповок не должно быть трещин. При обнаружении они должны быть удалены пологой зачисткой.

Без удаления допускаются местные дефекты в виде шлаковых включений, волосовин, закатов и заковов, глубина залегания которых, определяемая контрольной зачисткой, а также глубина зачистки трещин не должны превышать половины припуска на механическую обработку, считая от номинала.

3.8. Контроль на наличие волосовин производится по ТУ 14-336-72 на готовых деталях, при этом контроль немагнитных сталей производится по усмотрению потребителя.

3.9. Макроструктура, выявляемая на изломах и протравленных темплетах, должна быть без пустот, усадочной рыхлости, свищей, трещин, расслоений, неметаллических включений, шиферного излома, видимых невооруженным глазом, и флокенов.

Оценку качества штамповок по макроструктуре и макростроению производят в соответствии с требованиями действующих стандартов и технических условий на поставку сортовой стали, сплава и по согласованным между поставщиком и потребителем фотоэталонам, полученным по результатам исследования первых партий.

3.10. По соглашению сторон штамповки подвергают УЗК.

3.11. В специальных технических условиях или чертеже на штамповки, кроме перечисленных в настоящем стандарте, указывают следующие требования:

Марку стали, сплава, шифр и группу штамповок;

Необходимость и способ очистки от окалины;

Количество контролируемых штамповок в предъявляемой партии;

Количество, место и схему вырезки контрольных образцов, показатели механических свойств, а также режим термообработки заготовок контрольных образцов и их сечение;

Места замера твердости;

Дополнительные требования (по допустимому обезуглероживанию на необрабатываемой поверхности, величине зерна и др. Нормы устанавливаются соглашением сторон).

4. Правила приемки и методы испытаний

4.1. Штамповки предъявляют к приемке партиями, состоящими из штамповок одной плавки и одного шифра.

4.1.1. По соглашению сторон допускается комплектование партии крупногабаритных штамповок из металла ВДП и ЭШП нескольких плавок единовременной поставки.

4.2. Контролю состояния поверхности подвергают все штамповки поштучно в состоянии поставки.

4.3. Штамповки подвергают выборочному контролю размеров на 5 %-ах от числа предъявляемых в партии, но не менее, чем на 2-х штамповках. По требованию потребителя крупногабаритные штамповки подвергают контролю размеров поштучно, что оговаривается в СТУ.

4.4. Контроль штамповок I и II группы по твердости в состоянии поставки осуществляется на 10 % от числа предъявляемых в партии, но не менее, чем на 3-х штамповках. Объем контроля штамповок III группы оговаривается в СТУ.

В случае обнаружения несоответствия показателей твердости данным, установленным в табл. , проводятся 100 %-ные испытания.

4.5. Испытание механических свойств и твердости штамповок I группы производят на образцах, вырезанных из контрольного припуска.

4.5.1. Допускается для штамповок I группы проведение выборочного контроля механических свойств и твердости у поставщика при условии проведения поштучного контроля у потребителя. В этом случае объем контроля у поставщика оговаривается в СТУ.

4.6. Контроль штамповок II группы производят на образцах, вырезанных из тела штамповок по согласованной схеме.

По соглашению сторон вместе с партией штамповок поставщик направляет потребителю вторые половины или оставшиеся части контрольных штамповок.

4.7. Сечение заготовок для термической обработки, как правило, должно соответствовать сечению готовой детали. Для стали ЭП310-III, ЭП268-III термическую обработку производят в готовых образах с припуском под шлифовку.

4.8. Испытание на растяжение производят по ГОСТ 1497 -73 на образцах диаметром 10 или 5 мм с пятикратной расчетной длиной.

4.9. Испытание на ударную вязкость производят по ГОСТ 9454 -60.

4.10. Твердость по Бринеллю определяют по ГОСТ 9012-59 .

4.11. Испытание нa длительную прочность производится по ГОСТ 10145 -62.

4.12. Контроль макроструктуры штамповок производят в объеме, оговоренном в ОТУ. По требованию потребителя штамповки I группы подвергают 100 %-ному контролю на излом.

Контроль излома производится на ударных образцах.

4.13. При неудовлетворительных результатах контроля макроструктуры штамповок допускается проведение повторных испытаний на удвоенном количестве темплетов, отобранных от штамповок, из числа не проходивших испытания. Результаты повторных испытаний являются окончательными, при этом штамповки, показавшие неудовлетворительные результаты при первичном контроле макроструктуры, бракуются. При обнаружении флокенов, хотя бы в одной штамповке, плавку бракуют без переиспытания и к повторной приемке не предъявляют.

4.14. В случае получения неудовлетворительных результатов при испытании механических свойств по какому-либо виду испытаний, допускается повторное испытание по данному виду на удвоенном количестве образцов. Результаты повторных испытаний являются окончательными.

4.15. Допускается перед повторным испытанием проводить испытание механических свойств образцов, подвергнутых отпуску при измененной температуре в пределах режима, указанного в табл. , или полной повторной термообработке. При этом испытание считается первичным с определением всех механических свойств и твердости.

4.16. Один раз в полугодие или на каждой 30-й партии штамповок, а также при изготовлении опытной партии или коренном изменении технологии производства штамповок поставщик производит комиссионный контроль штамповок I группы каждого шифра.

В дополнение к испытаниям, предусмотренными настоящим ОСТ, при комиссионном контроле производят:

Определение микроструктуры;

Определение механических свойств на образцах, вырезанных по дополнительной схеме.

Дополнительную схему вырезки контрольных образцов, объем и методику испытаний указывают в СТУ или чертеже. Результаты комиссионных испытаний направляются потребителю.

5. Маркировка и упаковка

5.1. Вид и место маркировки штамповки устанавливаются в чертеже или СТУ.

5.2. Вид упаковки оговаривается в СТУ.

5.3. Каждая партия штамповок сопровождается сертификатом, подписанным ОТК предприятия-изготовителя, в котором указываются:

Наименование предприятия-поставщика;

Марка стали, сплава, состояние поставки, номер партии - плавки, шифр штамповок;

Вес партии, количество штамповок;

Химический состав стали, сплава;

Результаты испытаний, предусмотренных настоящим стандартом, в том числе и повторных;

Номер настоящего стандарта.

5.4. Сертификат должен направляться потребителю с партией штамповок или выдаваться приемщику на руки.

Верно (Михайлюк)

Таблица 1

Марка стали, сплава

Номера стандартов, в которых указан химический состав

Режим термической обработки заготовок для контрольных образцов

Механические свойства, не менее

Твердость по Бринеллю (диаметр отп. мм), Роквеллу HRC

Временное сопротивление разрыву, кгс/мм 2

Предел текучести, кгс/мм 2

Относительное

Ударная вязкость, кгс × м/см 2

удлинение, %

сужение, %

12X13 (1X13)

ТУ 14-1-377-72

Закалка с 1050 °С, охлаждение на воздухе или в масле, отпуск при 700 - 790 °С, охлаждение на воздухе или в масле

20Х13 (2Х13)

ТУ 14-1-377-72

Закалка с 1050 °С, охлаждение на воздухе или в масле, отпуск при 600 - 700 °С, охлаждение на воздухе или в масле

3,90 - 3,30

30X13 (3X13)

TУ 14-1-377-72

Закалка с 1000 - 1050 °С, охлаждение на воздухе или в масле, отпуск при 200 - 300 ° С, охлаждение на воздухе или в масле

HRC ≥ 48

1Х13М

ТУ 14-1-377-72

Закалка с 1050 °С, охлаждение на воздухе или в масле, отпуск при 680 - 780 ° С, охлаждение в масле

4Х13 (4Х13)

ТУ 14-1-377-72

Закалка с 1050 - 1100 °С, охлаждение в масле, отпуск при 200 - 300 °С, охлаждение на воздухе или в масле

HRC ≥ 50

30Х13Н7С2

(3Х13Н7С2, ЭИ72)

ТУ 14-1-377-72

Закалка с 1040 - 1060 °С в воду, отжиг в течение 6 часов при 860 - 880 °С с охлаждением до 700 °С в течение 2 часов и дальнейшее охлаждение вместе с печью, нормализация при 660 - 680 ° С в течение 30 мин. с охлаждением на воздухе, закалка с 790 - 810 ° С в масле

3,30 - 3,05

95X18

(9X18, ЭИ229)

ТУ 14-1-377-72

Закалка с 1010 - 1040 °C, охлаждение в масле, отпуск при 200 - 300 °С, охлаждение на воздухе или в масле

HRC ≥ 55

20Х13Н4Г9

(2Х13Н4Г9, ЭИ1 00)

ТУ 14-1-377-72

Закалка с 1070 - 1130 °C, охлаждение на воздухе

40Х10С2М

(4Х10С2М, ЭИ107)

ТУ 14-1-377-72

Закалка с 1010 - 1050 °С, охлаждение в масле или на воздухе, отпуск при 720 - 780 °С, охлаждение в масле

3,70 - 3,30

14Х17Н2

(1Х17Н2, ЭИ268)

ТУ 14-1-377-72

1. Закалка с 975 - 1040 °С, охлаждение в масле, отпуск при 275 - 350 °С, охлаждение на воздухе

3,40 - 3,10

2. Закалка с 1010 - 1030 °C, охлаждение в масле, отпуск при 670 - 690 °С, охлаждение на воздухе

3,80 - 3,50

20X23H18

(Х23Н18, ЭИ417)

ТУ 14-1-377-72

Закалка с 1100 - 1150 ° С в воде или на воздухе

10X23H18

(0X23H18)

ТУ 14-1-377-72

Закалка с 1100 - 1150 ° в воде или на воздухе

12Х17Г9АН4

(Х17Г9АН4, ЭИ878)

ТУ 14-1-377-72

Закалка с 1050 - 1100 °С в воде

12X18H9T

(X18H9T)

ТУ 14-1-377-72

12Х18Н10Т

(Х18Н10Т)

ТУ 14-1-377-72

Закалка о 1050 - 1100 ° С на воздухе, в масле или воде

12Х18Н9

(Х18H9)

ТУ 14-1-377-72

Закалка с 1050 - 1100 ° C на воздухе, в масле или воде

17X18H9

(2Х18Н9)

ТУ 14-1-377-72

Закалка с 1050 - 1100 °С на воздухе, в масле или воде

45X14H14B2M

(4Х14H14B2M, ЭИ69)

ЧМТУ 1-1040-70

Отжиг при 810 - 830 °С, охлаждение на воздухе

4,30 - 3,60

4X14H14CB2M

(ЭИ240)

ЧМТУ 1-1040-70

Без термической обработки

10Х11Н20Т3Р

(Х12Н20Т3Р, ЭИ696)

ЧМТУ 1-1040-70

Нагрев до тем-ры 1100 - 1170 °С, выдержка 2 часа, охлаждение на воздухе или в масле. Старение при 700 - 750 °С в течение 15 - 25 час, охлаждение на воздухе

3,80 - 3,50

Х12Н20Т2Р

(ЭИ696А)

3,90 - 3,50

Х16Н25М6АГ

(ЭИ395)

ЧМТУ 1-1040-70

Закалка с 1160 - 1180 ° С в воду и старение при 700 °С в течение 5 часов

ХН78Т (ЭИ435)

ЧМТУ 1-1040-70

Закалка с 980 - 1020 °С, выдержка 2 - 3 часа, охлаждение на воздухе

40Х15H7Г7Ф2MC

(4Х15Н7Г7Ф2МС, ЭИ388)

ТУ 14-1-714-73

Закалка с 1170 - 1190 °C в воду или на воздухе, выдержка 30 - 45 мин, старение при 800 ± 20 °С в течение 8 - 10 часов

3,80 - 3,30

12Х25Н16Г7АР

(Х25Н16Г7АР, ЭИ835),

12Х25Н16Г7АР-III, ЭИ835-III)

ТУ 14-1-225-72

Закалка с 1050 - 1150 °C, выдержка 30 мин. - 1 час, охлаждение в воде или на воздухе

4,70 - 4,10

18 х)

37Х12Н88МФБ

(4Х12Н8Г8МФБ, ЭИ481),

37Х12Н8Г8МФБ-III

(4Х12Н8Г8МФБ-III, ЭИ481-III)

ТУ 14-1-226-72

Закалка: нагрев до тем-ры 1150 ± 10 °С, выдержка 1 час. 45 мин. - 2 часа 30 мин., полное охлаждение в воде.

Старение при 670 ° С в течение 16 час., нагрев до тем-ры 780 ± 10 °С, выдержка 16 - 20 часов, охлаждение на воздухе

3,65 - 3,45

3,65 - 3,45

13Х14Н3В2ФР-III

(1Х14Н3ВФР-III, ЭИ736-III)

ТУ 14-1-1089-74

1. Закалка с 1050 ± 10 °С в масле, отпуск при 640 - 680 °С.

2. Закалка с 1050 ± 10 °С в масле, отпуск при 540 - 580 °С

3,60 - 3,30

10 хх)

3,35 - 3,10

13Х11Н2В2МФ-III

(1Х12Н2ВМФ-III,

ЭИ961-III)

ТУ 14-1-1089-74

1. Закалка с 1000 - 1020 °С в масле, отпуск при 660 - 710 °С.

2. Закалка с 1000 - 1020 °С в масле, отпуск при 540 - 590 °С

3,70 - 3,40

10 хх)

3,45 - 3,10

10 хх)

1Х15Н4АМ3-III

(ЭП310-III)

ТУ 14-1-940-74

1. Закалка с 1070 ± 10 °C, охлаждение на воздухе, в воде или масле. Обработка холодом при минус 70° - 2 часа или минус 50 ° - 4 часа. Отпуск при 450 °С в течение 1 часа

10,0

2. Закалка с 1070 ± 10 ° C, охлаждение на воздухе, в воде или масле. Обработка холодом; при минус 70° - 2 часа или при минус 50 ° - 4 часа. Отпуск при 200 ± 100 в течение 2 час.

10,0

07Х16В6-III

(Х16Н6-III, ЭП288-III)

ТУ 14-1-22-71

Закалка в воде при 980 - 1000 ° С с последующей обработкой холодом при минус 70 °С, выдержка 2 часа или при минус 50 ° , выдержка 4 часа, отпуск при 350 - 380 °С, выдержка 1 час

1Х12Н2МВФАБ-III

(ЭП517-III)

ТУ 14-1-1161-75

Нормализация 1130 ± 10 °C, отпуск 750 - 780 °С, закалка с 1120 ± 15 °C в масле, отпуск 670 - 720 ° С

3,60 - 3,35

20Х3МВФА

(ЭИ415)

ТУ 14-1-44-71

Закалка с 1030 - 1060 ° С в масле, отпуск при 660 - 700 ° С в течение 1 часа, охлаждение на воздухе

3,60 - 3,30

______________

х) испытания при 900 ° С.

хх) испытания проводятся на образцах, вырезанных поперек направления волокна.

Примечания : 1. Штамповки из стали ЭИ395 и сплава ЭИ435 сдают без определения механических свойств и твердости.

2. Для штамповок из стали ЭИ481 и ЭИ481-III допускается проведение дополнительного старения при температуре 790 - 810 °С. Время выдержки при этом выбирается достаточным для обеспечения заданной твердости, н о не менее 5 часов . Для штамповок из стали ЭИ481-III при получении пониженных прочностных характеристик и твердости допускается повторная термообработка по режиму: закалка 1150 ± 10 °С, старение 650 - 670 ° С - 16 часов , воздух, второе старение 770 ± 10 ° C - 16 час., воздух.

3. Для штамповок из стали ЭИ736-III и ЭИ961-III разрешается проведение предварительной нормализации при температуре 1000 - 1020 ° С перед закалкой.

4. Для штамповок из стали ЭП310-III при получении по первому варианту временного сопротивления меньше 145 кгс/ м 2 разрешается для переиспытаний снижать температуру закалки до 1050 ± 10 ° С. Результаты контроля по этому режиму считать первичными.

5. Вариант термической обработки штамповок из стали ЭИ268, ЭИ736-III, ЭИ961-III, ЭП310-III оговаривается в заказе. При отсутствии указания в заказе заводу-поставщику предоставляет право выбирать режим термической обработки по своему усмотрению.

6. Штамповки, поставляемые без термической обработки, а также изготавливаемые из сталей и сплавов, на которые не указаны значения твердости, контролю на твердость не подвергаются. В этом случае контроль осуществляется соблюдением режима горячей деформации.

(28) Приоритет Госудерствввиый комитет СССРпо делам нзооретекнй н открмтнй(72) Авторы изобретения Производственное объединение "Ленннградскттй металлическийзавод(54) СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПОВАННЫХ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНЫХ СТАЛЕЙ И СПЛАВОВИзобретение относится к области обработки металлов давлением и может быть использовано при штамповке изделий иэ жаропрочных сталей и сплавов, например, турбинных лопаток и дисков.Известен способ изготовления изделий иэ жаропрочных сталей и сплавов, включающий нагрев заготовки до температуры горячей деформации, предварительную штамповку, нагрев и окончательную штамповку (в частности,на молоте) со степенью деформации 3 - 10%)11) .Недостатком известного способа (при штамповке на молоте) является невысокое качество изделий ввиду трудности обеспечения эа 15 данного размера аустенитного зерна металла изделия.Целью изобретения является устранение укаэанного недостатка при молотовой штамповке, а именно, повышение качества иэделий за счет обеспечения заданного размера аустенит.ного зерна.Цель достигается тем, что интервалы между ударами молота при окончательной штамповке составляют 0,5 - 10 сек., общая длительностьокончательной штамповки составляет 8 - 35 сек.,а суммарная степень деформации заготовкипри окончательной штамповке превышает диа.назон критических степеней деформации на2 - 15%,Получение заданного размера аустенитногозерна в изделиях, штампованных на молотах,связано с необходимостью обеспечения такихтемпературно-временных параметров 1 дтамповки (различных для различных марок сталейи сплавов), которые бы обеспечили возможность получения суммарной деформации за несколько ударов молота как суммы деформаций за отдельные удары, т.е. чтобы в промежуткахмежду ударами молота, при выбранных температурах деформации, не успевали бы протекать процессы рекристаллиэации обработки,снимающие упрочнение от предшествующейдеформации.Нижний и верхний пределы временного ин.тервала между ударами определяются величиной йревышения температуры деформируемойзаготовки в интервал времени между удара.3ми относительно порога рекристаллизации обработки для выбранной марки сплава (стали)и диапазона степеней деформации металлав различных участках заготовки за один удармолота. При этом минимальное значение временного интервала (0,5 сек) относится к случаю, когда температура конца предшествующейдеформации (на металле заготовки) превышает порог рекристаллизации обработки на максимальную величину (180 - 200)С. Для дости.жения этого величина относительной деформации заготовки за предцествунщий удар, должна быть предельно большой (4 - 5)%.Максимальное значение временного интервала(10 сек) относится к случаю, когда величинаотносительной деформации заготовки за предшествующий удар была минимальной (1%),и превышение. температуры, предшествующейдеформации относительно порога рекристаллизации обработки было минимальным (20 - 30)СОграничение общей длительности циклаокончательной штамповки (8 - 35 сек,) связанос тремя основными причинами:1) ограничением снижения температурыштамповки, поскольку это связано с существенным возрастанием сопротивления заготовкидеформированию;2) расширением диапазона критических степеней деформации при снижении температурыконца деформации и, в связи с этим, увеличением вероятности попадания отдельныхучастков заготовки в зоны критических степеней деформации при тех же суммарных величинах деформации;3) увеличением вероятности получения недопустимо крупного зерна в зонах заготовкис заторможенным течением металла, (где отно.сительная деформация существенно ниже средней (расчетной) в выбранном сечении заготов.ки), так как в этих зонах подготовительныеэтапы процесса рекристаллиз "ции обработкимогут полностью не прерываться частнымиобжатиями при каждом ударе молота,и при определенной длительности цикла штамповки,процесс рекристаллизации дбработки в этихзонах может начаться до окончания штамповкит,е. в этом случае в указанных зонах суммарные деформации не будут равны сумме частных деформаций за все удары молота, а значит,суммарная деформация в этих зонах можетне оказаться закритической, что приведет кпоявлению недопустимо крупного зерна вэтих зонах,733828 4 10 15 20 25 ЗО З 5 40451Я55 Численные пределы общей длительности цикла штамповки получены опытным путем на жаропрочных сплавах типа Н 65 ВМТИ (ЭИ - 893) для различных температур и степеней деформации. Таким образом, новый положительный эффект, создаваемый за счет введения указанныхвременных интервалов, связан с обеспечениемполучения заданного размера аустенитного зерна при штамповке заготовок из жаропрочныхсталей и сплавов на молотах за несколькоударов,Ввиду того, что при штамповке изделий намолотах в оптимальном интервале температуриз всех жаропрочных сплавов и сталей рекристаллизация металла штампуемых заготовок неуспевает протекать во время деформации, металл заготовок упрочняется в процессе деформации, и поэтому сопротивление заготовокдеформированию существенно возрастает с увеличением относительной деформации. В связис этим, для обеспечения возможности штамповки заготовок максимальных габаритов сзаданным размером аустенитного зерна, общаядеформация при изготовлении заготовок распределяется между предварительной и окончательной штамповками таким образом, чтобы приокончательной штамповке величина относительной деформации по всему объему заготовки (с учетом неравномерного ее распределения)находилась на уровне минимальных величинзакритических степеней деформации (5 - 20)%для различных марок жаропрочных сплавови сталей, т.е. на (2 - 15)% превышающих диапазон критических степеней деформации).При окончательной штамповке относительные деформации, получаемые в заготовке эаотдельные удары молота суммируются и составляют за весь цикл штамповки закритическуювеличину (5 - 20)%,За интервал времени между ударами молота могут протекать процессы отдыха, полигонизации и начальные стадии процесса рекристаллизации обработки. Однако площади, занятые вновь образованными рекристаллиэованными зернами за интервалы между ударами не должны превышать площадей, соответствующих максимально допустимому размеру зерна. При этом для различных марок жаропрочных сплавов и сталей и различных фактических температур деформации интервалы времени между ударами не должны превышать (0,5 - 10) сек, а общая длительность окончательной штамповки не должна превышать (8 - ЗУу сек, После окончательной штамповки, ввиду недопустимо большого интервала времени между штамповкой и правкой, во избежание появления крупного зерна при последующей термообработке, производят совмещенную обрезку облоя и правку,на обрезном прессе, при которой практическиисключаются дополнительные малые (критичес.кие) деформации (вытеснение металла в облой) по телу заготовки. Лля жестких загото33828 6размером аустенитного зерна, в результатечего возрастает приблизительно в 2 раза эксплуатационная стойкость изделий, например,лопаток,25 Составитель О. КорабельниковТехред А, Щепанская Корректор Г. Решетник Редактор Т. КузнецоваЗаказ 1957/15 Тираж 986 Подписное ЦНИИПИ Государственного комитета СССР по делам изобретений и открытий 13035,Чосква,Ж, Раушская наб., д. 4/5Филиал ППП "Патент", г. Ужгород, ул.Проектная,4 5 7 вок, не подвергающихся недопустимо большим короблениям при обычной (несовмещенной) обрезке облоя на обрезных прессах, производят после окончательной штамповки обычную обрезку облоя на обрезном прессе без после. дующей правки.П р и м е р. Проводилась опытная штамповка заготовок турбинных лопаток иэ сплава ЭИ - 893/ХБ 65 В 9 М 4 ЮТ длиной 730 мм и весом 30 кг.Заготовки нагревались до температуры 1150 С, предварительно штамповались на штамповочном молоте с массой падающих: частей 25 т. за несколько ударов молота в интервале температур (1000 - 1140) С, с недоштамповкой, обеспечивающей при окончательной штамповке относительную деформацию по телу заготовки в пределах (8 - 20)%, обрезали на заготовках облой на обрезном прессе.Затем заготовки нагревали до температуры150 С, окончательно штамповали на том же молоте за 5 - 6 ударов с интервалами между ударами (- 5) сек и общей длительностью цикла штамповки (15 - 20) сек. Размер аустенитного зерна, полученный в штампованных изделиях, находился в основном в пределах.0,8 мм, отдельные зерна до 1 мм, при допускаемом размере зерна1 мм.Использование предлагаемого способа изготовления штампованных изделий из жаропрочных сталей и сплавов обеспечивает по сравнению с известным способом возможность штамповки крупногабаритных изделий с заданным Формула изобретения Способ изготовления штампованных изделийиз жаропрочных сталей и сплавов, включающий О нагрев заготовки до температуры горячей деформации, предварительную штамповку, нагреви окончательную горячую штамповку за несколько ударов молота, о т л и ч а.ю щ и йс я тем, что, с целью повышения качества 15 изделий за счет обеспечения заданного размерааустенитного зерна, интервалы между ударамимолота при окончательной штамповке составтяют (0,5 - 10) сек., общая длительность окончательной штамповки составляет (8 - 35) сек,а суммарная степень. деформации заготовкипри окончательной штамповке превышает диапазон критических степеней деформации на (2 -15)%. Источники информации,принятые во внимание при экспертизе 1. Маевский И. Л. Обработка давлением ЗО,жаропрочных сплавов, М., 1964, с. 30 - 32, 46,115 - 117.2, Журнал "Кузнечно-штамповочное производство", 1977, У 5, с. 22 - 23 (прототип),

Заявка

2512647, 01.08.1977

ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ТУРБОСТРОЕНИЯ "ЛЕНИНГРАДСКИЙ МЕТАЛЛИЧЕСКИЙ ЗАВОД"

НЕМАЙЗЕР ЮРИЙ АЙЗИКОВИЧ, ШОБОЛОВ ПЕТР АЛЕКСАНДРОВИЧ, МКРТЫЧЯН ЗОРАБ АНТОНОВИЧ, ЧИВИКСИН ЯКОВ ЕФИМОВИЧ, ПАВЛОВ АНАТОЛИЙ ФЕДОРОВИЧ, САВИНОВ АВЕНИР МИХАЙЛОВИЧ, ЛЕВИН АЛЕКСАНДР ЕВГЕНЬЕВИЧ, БУРМИСТРОВ ИВАН ДМИТРИЕВИЧ

МПК / Метки

Код ссылки

Способ изготовления штампованных изделий из жаропрочных сталей и сплавов

Похожие патенты

Изобретения является повышение качества и производительности штамповки.Для этого формовку осуществляют двусторонним обжимом заготовки с последующимрасплющиванием в месте набора металла, аокончательную штамповку производят путемпоперечного обжима с осевым подпором.На фиг, 1 показана заготовка с выпучиной,полученная осевым обжимом; на фиг. 2заготовка после расплющивания выпучины; нафиг. 3 - штампованный тройник.Способ осуществляется следующим образом.Заготовку 1, полученную осевым обжимом в штампе, расплющивают на оправке илп свободно в месте выпучины 2 до высоты, равнойминимальному диаметру обжатых торцовыхучастков 3 с образованием овала 4 в плоско 5 сти приложения усилий. Полученную такимобразом заготовку укладывают в штамп...

В широтном направлении до полного их соприкосновения, Так как 7 Р =вЭ то коэффициент вытяжки определяетсяРтиз выражения К= - ,. т,е, испольэоВ Рдванне заготовки с фигурными вырезами приводит к снижению коэффициента вытяжки, что благоприятно сказывает- . ся на качестве штампованных изделий.Под действием широтных сжимающих напряжений, возникающих в заготовке при штамповке, большая ось овальных отверстий уменьшается, Учитывая, что оси вала выбраны, исходя из величины коэффициента вытяжки, то овал к конечному моменту штамповки превратится в круг, чем гарантируется захвати транспортировка штампованнога днища, Овальные отверстия, выпол-, ненные на периферийной части заготовки соответствующей технологическому припуску, не приводят к...

Валы и диски газотурбинных двигателей, работающие при повышенных температурах и нагрузках, передающие большие крутящие моменты изготовляют из высококачественных и дорогостоящих никелевых сплавов. Поставка валов и дисков ответственного назначения осуществляется в термически и механически обработанном состоянии с обеспечением полного металлургичес­кого контроля качества, включающего контроль свойств, ультразвуковой контроль, контроль поверхности люминесцентным (капиллярным) методом, а также контроль макро- и микроструктуры штамповок.

Многолетний опыт в области производства штамповок из жаропрочных сплавов позволяет успешно решать задачи изготовления сложных штамповок валов и дисков с учетом требований заказчика. Разработанные технологии, в первую очередь, ориентированы на минимизацию расхода металла и получение максимально высокого комплекса свойств за счет создания регламентированной структуры в процессе деформации и термической обработки.

Существуют три основных вида штамповки жаропрочных сплавов по температуре оснастки :

    традиционная горячая штамповка в относительно холодных штампах;

    штамповка в обогреваемых штампах, при которой Т штампа на 200400С ниже температуры заготовки;

    изотермическая штамповка, при которой температуры штампа и заготовки равны.

Температурный интервал, в пределах которого жаропрочный сплав, может быть, подвергнут горячей обработке давлением, относительно невелик и зависит от состава сплава. Для жаропрочных сплавов на основе никеля температурный интервал деформируемости в горячем состоянии сужается при переходе от сплавов с малым объемным содержанием -фазы к сплавам с повышенным ее содержанием. Для большей части операций деформации этот интервал определяется температурой начала плавления, с одной стороны и температурой -сольвуса, с другой. С увеличением объемной доли -фазы температура начала плавления сплава понижается, а температура -сольвуса повышается. Одновременно повышается температура рекристаллизации и снижается пластичность. Ширина интервала технологической пластичности может составлять, т. о. всего 10С. Дополнительные трудности возникают в следствии адиабатического разогрева заготовки, особенно существенного при повышенных скоростях деформации, а также в следствии захолаживания материала стенками штампа. При выборе оптимальных условий горячей деформации жаропрочных сплавов необходимо учитывать всю совокупность технологических факторов, включающую:

    характеристики пластического течения заготовки, зависящие от микроструктуры, температуры, степени деформации и скорости деформации;

    свойства материала матрицы, определяемые составом, температурой и величиной контактных напряжений;

    свойства смазки в зазоре между заготовкой и стенками штампа, выражаемые коэффициентом трения и коэффициентом теплопередачи;

    характеристиками штампового оборудования;

    микроструктуру штампованной детали и связанные с нею механические свойства.

Большинство поковок дисков выполняют на молотах и гидравлических прессах в стальных штампах, подогреваемых до температуры 200450°С, т.е. до лимитированной температуры отпуска материала штампа. При штамповке на молотах наблюдается существенная неравномерность температуры, степени и скорости деформации по объему заготовки. Неравномерность деформации проявляется в виде застойных зон и зон сосредоточенной деформации. При температуре заготовки в начале штамповки 1150°С ее поверхностные слои захолаживаются до 600-1000°С, а повышенная скорость деформирования (6-8 м/с) приводит к росту сопротивления деформации, затруднению заполнения полости ручья штампа и повышению его износа. Локализация деформации и теплового эффекта деформации приводят к структурной неоднородности поковок, которая не устраняется последующей термической обработкой. Однако высокая мощность молотового оборудования в сочетании с очень тонким контролем процесса штамповки позволяют решить сложную задачу получения заданной микроструктуры путем реализации широкого диапазона энергий удара (от легкого касания до полного удара), выполняемых с достаточно высокими воспроизводимостью и точностью.

Для штамповки вращающихся деталей реактивных двигателей рекомендуется штамповка в закрытых штампах с целью повышения деформационной проработки периферийных частей поковок, а для уменьшения захолаживания поверхностных слоев заготовок – использование в качестве материала штампов жаропрочных сталей, допускающих подогрев штампа до 500700°С. Кроме того известно, что штамповка на молотах значительно дешевле штамповки на гидравлических прессах.

Более благоприятные скоростные условия деформации реализуются при штамповке на гидравлических прессах. При штамповке на прессах появляется возможность снижать температуру нагрева на 50100°С при сохранении тех же удельных усилий, что и при молотовой штамповке. При переходе от динамического приложения нагрузки на молотах к статическому на прессах при той же пластичности сплавов снижается их сопротивление деформации. Однако быстрое остывание заготовок вследствие длительного контакта с относительно холодным штампом снижает эффект, достигаемый за счет снижения деформирующих усилий при штамповке с малыми скоростями.

Выходом из положения является применение изотермической штамповки и штамповки в обогреваемых штампах. Основной принцип изотермической штамповки заключается в обеспечении равенства температуры заготовки и температуры штампа. В этом случае поковка не охлаждается и деформирование может происходить с пониженной скоростью при небольшом сопротивлении деформации. Применение первого или второго варианта штамповки определяется как техническими, так и экономическими обстоятельствами.

При штамповке никелевых сплавов в обогреваемых штампах успех во многом определяется правильным выбором высокотемпературной смазки. Штамповка сплавов на основе никеля осуществляется с использованием смазок на основе стекла, поскольку эти смазки обеспечивают гидроди­намический режим трения с коэффициентом трения  < 0,05. Различные фирмы ограничивают температуру инструмента при штамповке в обогреваемых штампах 750850°С. Перепад температур в пределах 200400°С между заготовкой и штампом приводит к незначительному остыванию заготовки, которое компенсируют повышением скорости деформирования с целью сокращения времени контакта штампа с заготовкой. Этот прием является компромиссом между изотермической и обычной штамповкой и широкого практического применения при штамповке никелевых сплавов не нашел.

Перечисленные недостатки традиционных способов штамповки и штамповки в обогреваемых штампах поковок из никелевых сплавов, постоянно растущие мощности штамповочного оборудования и повышенные требования к точности и свойствам штампованных поковок заставили производителей обратить основное внимание на внедрение изотермической штамповки. Предотвращение потерь тепла и, как следствие, поверхностного захолаживания заготовки, обусловливают следующие преимущества изотермической штамповки: меньшие деформирующие усилия, лучшее заполнение полости штампа и возможность штамповки поковок сложной формы с тонкими ребрами и полотнами, возможность штамповки сплавов с узким температурным интервалом и при более низких температурах, повышение пластичности заготовок, большая равномерность деформации и высокая точность поковок.

Изотермическая штамповка требует дополнительных затрат, связанных с применением уникальных и дорогостоящих жаропрочных штамповых материалов, мощных электрических или газовых устройств для обогрева штампов, специальных гидравлических прессов с пониженной скоростью перемещения плунжера. При изотермической штамповке никелевых сплавов применяют штампы из молибденовых сплавов. Наиболее широкое распространение получил молибденовый сплав TZM (0,5 Ti; 0,1 Zr; 0,01-0,04 С) с карбидным упрочнением. Сплав плотностью 10,2 г/см 3 обладает высокими прочностью и сопротивлением ползучестью до 1200°С. Заготовки массой до 4,5 т получают порошковой металлургией путем изостатического прессования, спекания и последующей ковки. Основные недостатки молибденовых штампов – высокая стоимость и интенсивное окисление при температурах выше 600°С. Поэтому процесс штамповки проводят в вакууме или в защитной атмосфере, для осуществления которого разработаны специальные установки на станине пресса для подачи заготовки в рабочую зону через шлюз с помощью механической системы транспортировки и сложной системы контроля температуры.

Более простым и технологичным приемом изотермирования очага деформации является теплоизоляция нагретой заготовки от соприкосновения с холодным инструментом. В качестве теплоизолирующих слоев могут применяться расплавы солей, стекло, керамика, асбест и сталь. Они несколько затрудняют контроль размеров, но зато существенно снижают растрескивание, обусловленное захолаживанием заготовки инстру­ментом. Затраты на защитные покрытия окупаются вследствие меньших припусков на механическую обработку. В промышленности для этих целей широко используют стеклянные, эмалевые и стеклоэмалевые покрытия, которые наряду с теплоизоляционными свойствами, выполняют роль смазки. Стеклосмазки обеспечивают незначительное падение температуры в процессе переноса заготовки из нагревательных устройств, однако не дают возможности поддерживать изотермические условия в течение всего процесса деформации заготовки. В последние годы появились публикации об исследованиях изотермической и соответственно сверхпластической штамповки в холодном инструменте за счет использования гибких органических тканей-прокладок между инструментом и нагретой заготовкой. Ряд американских фирм при штамповке титановых и никелевых сплавов использует гибкую керамическую ткань Nextell, применяемую для изоляции в космических системах «Шатл». Прокладка выдерживает температуру нагрева до 1400С. В отечественной промышленности в качестве теплоизолирующих прокладок опробуется муллитокремнеземный войлок.

Технология изотермической штамповки позволяет также осуществлять штамповку в условиях сверхпластичности, что является идеальным для точной штамповки поковок сложной формы с тонкими ребрами. Реализация условий сверхпластической деформации снижает рас­ход металла более чем в 2 раза, при этом уменьшаются затраты на обработку резанием, появляется возможность штамповки поковок сложной формы за один ход пресса. Например, при штамповке турбинного диска из сплава Astroloy способом «геторайзинг» масса исходной заготовки – 72,6 кг, а масса диска после обработки резанием – 68 кг. Ранее такие диски получали обычной штамповкой из заготовки массой 181 кг. Как свиде­тельствуют расчеты, сверхпластическое деформирование является серьезной альтернативой при использовании обычных прессов усилием от 50 МН. Выгоды от снижения усилия прессования превосходят затраты на обогрев штампов и защитную атмосферу.

По сравнению с традиционными методами метод изотермической штамповки позволяет изготавливать изделия сложной формы с высокой точностью, с заданной структурой и физико-механическими свойствами. Максимальный диаметр штампуемых заготовок - 1000 мм. Благодаря минимальным припускам значительно сокращаются расходы на последующую механическую обработку изделий.

Технология обеспечивает:

    повышение ресурса и эксплуатационных характеристик деталей на 20-25%

    уменьшение в 1,5-3 раза расхода металла

    снижение в 10 раз мощности используемого кузнечно-прессового оборудования

    значительное сокращение себестоимости изделий

В частности, заготовка корпуса тормоза для самолета ТУ-204 получена методом изотермической штамповки при температуре 950 O С из титанового сплава ВТ9 (вес 48 кг, коэффициент использования металла - 0,53). Технология позволяет исключить болтовые и сварные соединения в конструкции корпуса, снизить на 19% массу детали, повысить в 2 раза срок эксплуатации, сократить расход титанового сплава, уменьшить на 42% объем механической обработки.

Заготовка диска привода подпорных ступеней авиационного двигателя получена газовой формовкой (аргон) в изотермических условиях при температуре 9600С из титанового сплава ВТ9 (вес - 18 кг, коэффициент использования металла - 0,58). Технология позволяет исключить сварные соединения в детали, повысить на 15% ресурс эксплуатации, сократить расход титанового сплава, снизить на 52% объем механической обработки.

Материалы используемые для штамповки: - алюминиевые, магниевые, медные, латунные сплавы; - электротехнические и автоматные стали.

Габариты штампуемых заготовок: - диаметр 10...250 мм; - высота 20...300 мм; - масса 0,05...5,0 кг.

Используемое оборудование: - пилы для разделки исходного материала; - прессы (гидропрессы усилием от 160тс до 630тс); - электропечи для разогрева исходных и для закалки штампованных заготовок; - универсальное металлорежущее оборудование.

Изотермическая штамповка заготовок сложного профиля

Магниевые заготовки

Рис.3.2. Титановый сплав

Рис.3.3.Титановый сплав

Потребность повышения рабочих температур никелевых сплавов и соответствующий рост степени их легирования, а также ограничения, связанные с ликвацией при литье слитков, гетерогенизация структуры и, как следствие, снижение технологической пластичности и стабильности эксплуатационных свойств открыли перспективу развития технологии порошковой металлургии . Уже к середине семидесятых годов стало возможным создание газовой турбины, практически полностью изготовленной методами порошковой металлургии . Известны следующие схемы обработки порошков-гранул с использованием пластической деформации :

    спекание + изотермическая штамповка;

    ГИП + обычная штамповка;

    ГИП + экструзия + изотермическая штамповка.

Области применения определяют и границы использования порошковой технологии для изготовления деталей из суперсплавов для газовых турбин. Порошковые суперсплавы применяют в тех случаях, когда «обычные детали», изготовленные методами литья и штамповки, не отвечают предъявляемым рабочими условиями требованиям. Разрушение обычных материалов, как правило, происходит в результате образования сегрегации, что вызывает ухудшение механических свойств или их нестабильность и снижение термомеханических свойств. В таких случаях порошковая технология, вполне может заменить другие (более предпочтительные) методы изготовления деталей, не способные обеспечить требуемое качество изделий.

После того как в процессе летных испытаний дисков полученных ГИП в двигателе F 404 в 1980 с перерывом в два месяца два истребителя F 18 ВМС США потерпели аварию, зарубежные фирмы отдают предпочтение технологическим схемам, включающим пластическую деформацию.

Разработанный фирмой Pratt and Whitney в конце 60-х годов процесс «геторайзинг» позволил традиционно необрабатываемые литые никелевые сплавы, такие как сплав IN100, подвергать штамповке подобно деформируемым сплавам. Сущность процесса заключается в том, что материал заготовки методом прессования переводят в сверхпластичное состояние, а затем изотермической штамповкой в определенных температурно-скоростных условиях штампуют полуфабрикаты, близкие к конечной форме изделия. Процесс запатентован фирмой разработчиком и пригоден только для сплавов, способных проявлять сверхпластичность. В сочетании с термической обработкой этот процесс обеспечивает более высокую прочность при повышенных температурах и большую долговечность при жаропрочных испытаниях, чем у литейных и обычных деформируемых сплавов, и наиболее эффективен доя изготовления сплошных изделий типа дисков.

С помощью процесса «геторайзинг» получены из сплава IN100 на прессе усилием 18МН такие изделия, которые традиционным способом невозможно изготовить даже на прессе усилием 180МН (180000 т).

В настоящее время конфигурация штамповок для дисков авиационных двигателей определяется возможностями ультразвуковой дефектоскопии, хотя применяемые методы деформации с малыми скоростями позволяют получать более точные и легкие заготовки.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

Штамповые стали для горячего деформирования

Выполнил: Чесунов Н.С.

Группа: МТ 8-62;

Проверил: Смирнов А.Е.

Москва, 2016г.

1. Штамповые стали

Штамповые стали горячего деформирования работают в тяжелых условиях, испытывая интенсивное ударное нагружение, периодический нагрев и охлаждение поверхности нагрев и охлаждение поверхности. Основным признаком штамповых сталей горячего деформирования является более низкое по сравнению со сталями для инструментов холодного деформирования содержание углерода (0,3 - 0,6%), что предопределяется повышенными требованиями к ним относительно вязкости и разгаростойкости.

От них требуется сложный комплекс эксплуатационных и технологических свойств. Кроме достаточной прочности, износостойкости, вязкости и прокаливаемости (для крупных штампов) эти стали должны обладать также теплостойкостью, окалиностойкостью и разгаростойкостью (устойчивость к образованию поверхностных трещин, вызываемых объёмными изменениями в поверхностном слое при резкой смене температур). Разгаростойкость обеспечивается снижением содержания углерода в стали, которое сопровождается повышением пластичности, вязкости, а также теплопроводности, уменьшающий разогрев поверхностного слоя и термические напряжения в нем.

1.1 Область применения заданной группы материалов, типовые детали, изготавливаемые из этих материалов

Марка Стали

Область применения

Молотовые штампы паровоздушных и пневматических молотов с массой падающих частей свыше 3 т для штамповки цветных сплавов, углеродистых и низколегированных конструкционных сталей; штампы для молотов меньшей мощности со сложной и глубокой гравюрой; прессовые штампы и штампы машинной скоростной штамповки при горячем деформировании легкий цветных сплавов; блоки матриц для вставок горизонтально-ковочных машин.

Молотовые штампы паровоздушных и пневматических молотов с массой падающих частей до 3 т, имеющие неглубокую гравюру, работающие при невысоких давлениях и используемые для штамповки цветных сплавов, углеродистых и низколегированных сталей.

Молотовые штампы паровоздушных и пневматических молотов с массовой падающих частей до 3 т для деформации легированных конструкционных и коррозионно-стойких сталей (вместо менее теплостойких сталей 5ХНМ, 5ХНВ); штампы кривошипных горячештамповочных прессов до 4000 т, для штамповки деталей из углеродистых и низколегированных сталей; вставки и пуансоны для высадки деталей из этих материалов на горизонтально- ковочных машинах усилием до 1000 т; прессовый инструмент для обработки алюминиевых сплавов.

Крупные молотовые штампы, в том числе для чистовых операций при обработке труднодеформируемых металлов; штампы-контейнеры, работающие при длительном нагружении; кольца-бандажи: крупные внутренние втулки, пресс-штемпели, иглы горизонтальных прессов усилием до 1200-2000 т, работающие при длительном нагреве.

Крупные штампы (с наименьшей стороной до 600 мм) для штамповки поковок из конструкционных сталей и жаропрочных сплавов на молотах с массой падающих частей свыше 3 т и кривошипных прессах усилием 4000 т и более (вместо менее теплостойких сталей 5ХНМ, 4ХМФС); инструменты (зажимные и формирующие вставки, наборные и формовочные пуансоны) для высадки конструкционных сталей и жаропрочных сплавов на горизонтально-ковочных машинах, ножи горячей резки; мелкие прессовые и молотовые вставки.

Мелкие молотовые штампы, особенно чистовой штамповки с наименьшей стороной до 100-125 мм; молотовые (диаметром или стороной до 200мм) и прессовые вставки (предварительного и окончательного ручья, знаки, выталкиватели, внутренние втулки, пресс-штемпели, иглы для прошивки труб) при горячем деформировании конструкционных сталей и цветных сплавов в условиях крупносерийного производства; форма литья под давлением алюминиевых и магниевых сплавов со стороной до 70- 80мм

Молотовые и прессовые вставки (диаметром до 200-250 мм) с таким же назначением, как и из стали 4Х5МФС; инструмент для высадки заготовок из легированных конструкционных и жаропрочных материалов на горизонтально-ковочных машинах; пресс-формы литья под давлением алюминиевых, магниевых и цинковых сплавов.

Мелкие молотовые штампы; молотовые и прессовые вставки (диаметром до 300-400 мм); инструмент горизонтально-ковочных машин при горячем деформировании коррозионно-стойких сталей и жаропрочных сплавов, работающий в условиях повышенных давлений (800-1500 МПа) и нагрева до 650-660 С; пресс-формы литья под давлением медных сплавов

Инструмент для горячего деформирования на кривошипных прессах и горизонтально-ковочных машинах, подвергающийся в процессе работы интенсивному охлаждению (как правило, для мелкого инструмента); пресс-формы литья под давлением медных сплавов; ножи для горячей резки

Тяжелонагруженный прессовый инструмент (мелкие вставки знаков, матрицы и пуансоны для выдавливания и т.п.) при горячем деформировании легированных конструкционных сталей и жаропрочных сплавов

Тяжелонагруженный прессовый инструмент (прошивные и формирующие пуансоны, матрицы и т.п.); инструмент для высадки на горизонтально-ковочных машинах и вставки штампов напряженных сталей и жаропрочных конструкций для горячего объемного деформирования конструкционных сталей и жаропрочных металлов и сплавов (вместо 3Х3М3Ф и 4Х2В5МФ)

Иглы, пуансоны для прессования аустенитных, жаропрочных и коррозионно-стойких сталей и сплавов, а также титановых сплавов при температурах до 650-675 С, выполняемых без интенсивного охлаждения

1.2 Критерии конструкционной прочности, надежности, долговечности, определяющие работоспособность типовых деталей

штамповая сталь горячее деформирование

Конструкционная прочность - комплексная характеристика, включающая сочетание критериев прочности, надежности и долговечности.

На конструкционную прочность влияют следующие факторы:

· конструкционные особенности детали (форма и размеры);

· механизмы различных видов разрушения детали;

· состояние материала в поверхностном слое детали;

· процессы, происходящие в поверхностном слое детали, приводящие к отказам при работе.

Необходимым условием создания деталей при экономном использовании материала является учет дополнительных критериев, влияющих на конструкционную прочность. Этими критериями являются надежность и долговечность.

Надежность - свойство изделий, выполнять заданные функции, сохраняя эксплуатационные показатели в заданных пределах в течение требуемого времени или сопротивление материала хрупкому разрушению.

Долговечность - способность материала сопротивляться развитию постепенного разрушения, обеспечивая работоспособность деталей в течение заданного ресурса времени.

Рассматриваемые в задании детали, сделанные из выбранных мной марок штамповых сталей горячего деформирования, работают в тяжелых условиях, испытывая интенсивное ударное нагружение, периодический нагрев и охлаждение поверхности, эти стали должны обладать также теплостойкостью, окалиностойкостью и разгаростойкостью.

· Теплостойкость - способность материалов сохранять жёсткость и другие эксплуатационные свойства при повышенных температурах, определяет износостойкость и сопротивление термической усталости.

· Окалиностойкость - способность материала противостоять химическому разрушению поверхности под воздействием воздушной или газовой среды при высоких температурах

· Разгаростойкостью - (сопротивление термической усталости) определяется сопротивлением стали образованию поверхностных трещин под нагрузкой при многократном нагреве и охлаждении.

1.3 Особенности структуры, химического состава и свойств заданной группы материалов

По условиям работы и уровню основных свойств стали подразделяют на три основных группы: умеренной теплостойкости и повышенной вязкости; повышенной теплостойкости и вязкости; высокой теплостойкости;

· Стали умеренной теплостойкости и повышенной вязкости (5ХНМ, 5ХНВ, 5ХНВС, 5ХГМ, 4ХМФС, 4ХМНФС, 3Х2МНФ,5Х2МНФ) относят к доэфтектоидной (до 0,8 % С) группе. Содержание карбидообразующих элементов в сталях минимально (до 7 - 9 %) что исключает возникновение карбидной неоднородности даже в крупных сечениях. В небольших количествах (до 3 %) могут образовываться более термостойкие карбиды Мe 6 С, MeC, М 23 С 6, вызывающие вторичное твердение. Поэтому теплостойкость сталей невысокая.

Стали 5ХНМ, 5ХНВ, 5ХНВС, 5ХГМ сохраняют предел текучести до 1000 Мпа при нагреве до 350-375 С, а стали 4ХМНФС, 3Х2МНФ,5Х2МНФ при нагреве до 400 - 425 С вследствие карбидов Мe 6 С, MeC, М 23 С 6

· Стали повышенной теплостойкости и вязкости (4Х5МФС, 4Х5МФ1С, 4Х5В2ФС, 4Х3ВМФ,3Х3М3Ф) относят к заэвтектоидным, так как содержание первичных карбидов в них мало. В отожженом состоянии доля карбидной фазы (Мe 6 С, VC, М 23 С 6) составляет 6 - 12%. Теплостойкость сталей повышается с увеличением в структуре количества карбидов Мe 6 С, VC, то есть при повышении концентрации вольфрама, молибдена и ванадия.

· Стали высокой теплостойкости (4Х2В5МФ, 5Х3В3МФС, 2Х6В8М2К8) относят к заэвтектоидным. Стали 4Х2В5МФ и 5Х3В3МФС образуют группу сталей с карбидным упрочнением, а стали типа 2Х6В8М2К8 - с карбидоинтерметаллидным. Содержание карбидной фазы в сталях 4Х2В5МФ и 5Х3В3МФС составляет 10 - 13 % (Мe 6 С, МC), в стали 2Х6В8М2К8 - только 6 - 7 % (Мe 6 С), также дополнительно содержится интерметаллид (Fe, CO) 7 W 6 .

1.4 Система легирования (назначения легирующих элементов)

Хром (Сr) - повышает износостойкость, увеличивает прочность и прокаливаемость стали, что особенно важно для крупных пуансонов и матриц. При наличии свыше 2,5% повышает устойчивость стали против отпуска, особенно при нагреве инструмента до температур, выше 300° С. Вместе с марганцем уменьшает коробление при закалке.

Никель (Ni) - наряду с хромом он значительно увеличивает прокаливаемость стали и придает вязкость.

Марганец (Mn) - повышает прокаливаемость стали. В сочетании с хромом уменьшает коробление при закалке, но увеличивает склонность стали к перегреву. Марганец, как более дешевый легирующий элемент, является заменителем никеля.

Вольфрам (W) - введенный в сталь для пресс-форм и штампов для горячего деформирования повышает твердость, износостойкость стали и теплостойкость, необходимые для предупреждения отпускной хрупкости второго рода, которую в больших сечениях нельзя устранить быстрым охлаждением. Вольфрам и Молибден измельчают зерно и уменьшают склонность стали к перегреву.

Молибден (Mo) - вводится в высокохромистую сталь для увеличения ее вязкости и повышения прокаливаемости. (в отличие от вольфрама, который увеличивает ее слабее).

В штампах для горячего деформирования предохраняет от отпускной хрупкости, но резко повышает чувствительность стали к обезуглероживанию.

Ванадий (V) - уменьшает хрупкость закаленной стали, предохраняет сталь от перегрева при закалке. В количестве свыше 1% в сочетании с хромом значительно повышает устойчивость против воздействия высоких температур.

Кремний (Si) - увеличивает прокаливаемость стали, повышает стойкость против отпуска, но способствует обезуглероживанию при нагреве.

Эффективным для штамповых сталей горячего деформирования является комплексное легирование, при котором в стали наряду с карбидообразующими элементами вводятся также никель или марганец в пределах 1,0ч1,5 % для повышения ударной вязкости, разгаростойкости, прокаливаемости и кремний до 1 % для увеличения окалиностойкости и прочности.

1.5 Применяемая термическая обработка

Термическая обработка сталей для изготовления молотовых штампов представляет собой ответственную операцию. После изотермического отжига и механической обработки их нагревают под закалку до 820 - 880 С, применяя засыпки и обмазки для предохранения от окисления и обезуглероживания, так как время нагрева может составлять 20 - 25 ч. Для снижения термических напряжений небольшие штампы охлаждают на воздухе, остальные после подстуживания до 750 - 780 С в масле по способу прерывистой закалки. Не остывшие полностью штампы переносят в печь для отпуска.

Также для заготовок крупных штампов проводят отжиг с целью устранения флокеночувсвительности и измельчения зерна аустенита сталей проводят при 760 - 790 С для сталей 5ХНМ, 5ХНВ, 5ХГМ, при 790 - 820 для стали 5ХНВС, при 800 - 820 С для сталей 4ХМФС, 5Х2МНФ и при 820 - 840 С для стали 3Х2МНФ. Время выдержки при отжиге 1 час плюс 1,5 минуты на 1 мм толщины.

Оптимальные температуры закалки устанавливают на основе определенного соотношения между твердостью и зерном аустенита, размер которого существенно влияет на ударную вязкость стали. Для молотовых штампов с наименьшей стороной не более 200 - 250 мм при получении после закалки структуры мартенсита желательно иметь зерно аустенита не крупнее 9- 10 номера. При большем размере штампов, когда образуется смешанная бейнитно - мартенситная структура, лучший комплекс свойств достигается при зерне аустенита не крупнее 11 номера. Температуру отпуска назначают в зависимости от габаритов штампа и условий эксплуатации. Образование верхнего бейнита при закалке штампов высотой более 300 мм снижает твердость и теплостойкость. При этом в сталях 5ХНМ, 5ХНВ, 5ХНВС сохраняется, а сталей 4ХМФС, 3Х2МНФ,5Х2МНФ уменьшается (бейнитная хрупкость). Поэтому необходимо проводить отпуск. Для сталей 5ХНМ, 5ХГМ проводят средний отпуск, а для сталей 5ХН, 4ХМФС, 5Х2МНФ - высокий отпуск.

Стали 5ХНМ (5ХНВ) характеризуются невысокой устойчивостью против роста зерна аустенита, так как их карбидная фаза представлена в основном легкорастворимыми частицами типа М 3 С. До более высоких температур (980--1020°С) сохраняют мелкое зерно стали 4ХСМФ и 5Х2МНФ, содержащие в структуре наряду с цементитом карбиды типа М 6 С и МС. Твердость после закалки повышается до определенных температур аустенитизации, соответствующих наиболее интенсивному растворению карбидов. При дальнейшем увеличении температуры (свыше 900 - 950°С для сталей 5ХНМ, ЗХ2МНФ и 1000 - 1050°С для сталей 4ХСМФ, 5Х2МНФ) она изменяется мало или понижается вследствие увеличения в структуре количества остаточного аустенита.

Обычно штампы из сталей этой группы для получения необходимых прочности, теплостойкости и вязкости нагревают под закалку до температур, обеспечивающих сохранение зерна аустенита не крупнее №9 - 10. Однако эти рекомендации справедливы в основном для небольших молотовых штампов (стороной, диаметром не более 200--250 мм) со структурой мартенсита после закалки или более крупных прессовых штампов с неглубокой рабочей гравюрой, работающих без ударных нагрузок. Для крупногабаритных молотовых штампов со смешанной бейнитно-мартенситной структурой после закалки, неизбежно получаемой при замедленном охлаждении после аустенитизации и значительно снижающей- вязкость стали, они нуждаются в уточнении. В этом случае (штампы со стороной диаметром более 200 мм) лучшее сочетание прочности, теплостойкости и вязкости сталей достигается после получения зерна аустенита не крупнее № 10-11.

Структура сталей после закалки определяется их химическим составом и условиями охлаждения после аустенитизации, зависящими в свою очередь от размеров штампов, охлаждающей способности среды

2. Концептуальная схема базы данных

· Созданы две таблицы «Химический состав» и «Механические свойства», которые связаны между собой ключевыми полями связью один ко многим.

· Созданы и заполнены соответствующие формы

* Выполнены запросы:

1) Выбрать материал и режим ТО для штампа, работающего длительное время (не менее 300 часов) при температуре до 500 С и нагрузке не менее 300 МПа.

2) Выбрать материал и режим ТО для крупного молотого штампа, работающего до температуры 300 С. Требование: ударная вязкость KCU не менее 0,55 МДж/м 2

* Выполнены отчеты:

Список литературы

1) Штамповые стали. Позняк Л.А., Скрынчемко Ю.М., Тишаев С.И. Металлургия,1980.

2)Справочник по конструкционным материалам: Б.Н. Арзамасов, Т.В. Соловьева, С.А. Герасимов и др. Под ред. Б.Н. Арзамасова и Т.В. Соловьевой. Издательство МГТУ им. Н.Э. Баумана,2006.

3)Инструментальные стали справочник: Л.А. Позняк, С.И. Тишаев, Ю.М. Скрынченко и др. Металлургия,1977.

4)Материаловедение: Ю.С. Козлов. Высшая школа,1983.

5)Материаловедение:Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин, Н.М. Рыжов, В.И. Силаева. Издательство МГТУ им. Н.Э. Баумана,2008.

Приложение

Влияние хрома

Хром положительно влияет на ряд характеристик штамповых сталей (прокаливаемость, склонность к вторичному твердению, теплостойкость и т.д.). По мере повышения его концентрации в твердом растворе существенно возрастает устойчивость аустенита как в перлитной, так и в промежуточной областях. При снижении содержания хрома с 5 до 3% изменяется состав карбидных фаз; в стали с 3% хрома присутствуют карбиды Ме 3 С наряду с карбидами Ме 23 С 6 и Ме 6 С, что немного уменьшает теплостойкость и предел текучести при температурах выше 400-500 о С.

Влияние вольфрама и молибдена

Увеличение концентрации вольфрама повышает теплостойкость до определенных пределов. Такими пределами являются 1,0-2% W в сталях типа 4Х4ВМФС и ~ 3% в сталях типа 5Х3В3Ф2МС. Содержание молибдена, как правило, составляет 1,5-3%. Молибден в этих сталях с заменяет вольфрам в соотношении 1: 2.

Стали, в которых молибден заменяет более 2-3% W, имеют меньшую карбидную неоднородность. Молибден при замене 3-4% W (и одинаковом ванадии) почти не изменяет теплостойкости, вследствие чего прочностные свойства вольфрамомолибденовых сталей при нагреве такие же, как вольфрамовых. Выбор конкретный соотношений между вольфрамом и молибденом определяется условиями эксплуатации инструмента, и он должен быть экономически обоснован.

Влияние ванадия

Ванадий оказывает эффективное влияние на процессы собирательной рекристаллизации и существенно уменьшает чувствительность штамповых сталей к перегреву. В относительно невысоколегированных сталях (типа 5ХНМ и др.) его действие оказывается заметным уже при содержании порядка 0,10-0,30%. Для других групп сталей, содержащих карбиды типа М 7 С 3 , М 6 С, М 23 С 6 , требуется большее количество ванадия для существенного смещения температур начала интенсивного роста зерна.

Ванадий, также, как и хром, обладает сильно выраженной склонностью к дендритной ликвации, но в отличие от него ванадий благоприятно влияет на дисперсность и характер распределения первичных карбидов в высокоуглеродистых сталях.

Влияние кремния

Кремний является ферритообразующим элементом и «выклинивает» область существования г-железа в сплавах системы Fe - Si уже при содержании около 2%. Аналогично влияет он на диаграмму состояния углеродистых сталей (0,5-1% С), однако в этом случае полное завершения б > г-превращения достигается при содержаниях 3-5% кремния. Не образуя в сплавах на основе железа соединений с углеродом, кремний практически не оказывает влияния на тип и состав карбидов в штамповых сталях, но вызывает их укрупнение в отожженном состоянии.

Влияние никеля и марганца

Легирование сталей никелем и марганцем повышает прокаливаемость. Этим определяется целесообразность легирования ими штамповых сталей, предназначенных для изготовления крупногабаритных инструментов. Мало изменяя чувствительность к перегреву и, как следствие, оптимальные температуры закалки, никель и марганец сильно понижают критическую скорость охлаждения.

Никель эффективно повышает пластичность, что очень важно для материалов, испытывающих воздействие динамических нагрузок.

Размещено на Allbest.ru

Подобные документы

    Назначение и особенности эксплуатации инструментальных сталей и сплавов, меры по обеспечению их износостойкости. Требования к сталям для измерительного инструмента. Свойства углеродистых и штамповых сталей для деформирования в различных состояниях.

    контрольная работа , добавлен 20.08.2009

    Виды сталей для режущего инструмента. Углеродистые, легированные, быстрорежущие, штамповые инструментальные стали. Стали для измерительных инструментов, для штампов холодного и горячего деформирования. Алмаз как материал для изготовления инструментов.

    презентация , добавлен 14.10.2013

    Условия эксплуатации матрицы. Оценка воздействия технологических факторов на свойства материалов. Требования, предъявляемые к стали для штампов горячего деформирования. Перечень марок сталей и сплавов для изготовления пуансона-матрицы. Режимы обработки.

    курсовая работа , добавлен 11.06.2013

    Закаливаемость и прокаливаемость стали. Характеристика конструкционных сталей. Влияние легирующих элементов на их технологические свойства. Термическая обработка сплавов ХВГ, У8, У13 и их структуры после нее. Выбор вида и режима термообработки детали.

    курсовая работа , добавлен 12.01.2014

    Сравнительная характеристика быстрорежущих сталей марок: вольфрамомолибденовой Р6М5 и кобальтовой Р9М4К8 - различие в свойствах этих сталей и оптимальное назначение каждой из них. Разработка и обоснование режимов обработки изделий из этих сталей.

    практическая работа , добавлен 04.04.2008

    Повышение механических свойств стали путем введения в нее легирующих элементов. Классификация стали в зависимости от химического состава. Особенности сварки углеродистых и легированных сталей. Причины возникновения трещин. Типы применяемых электродов.

    курсовая работа , добавлен 06.04.2012

    Классификация сталей. Стали с особыми химическими свойствами. Маркировка сталей и области применения. Мартенситные и мартенсито-ферритные стали. Полимерные материалы на основе термопластичных матриц, их свойства. Примеры материалов. Особенности строения.

    контрольная работа , добавлен 24.07.2012

    Классификация инструментальных сталей. Влияние легирующих элементов на структуру и свойства штамповых сталей. Химический состав стали 4Х5МФ1С. Влияние температуры закалки на структуру и твердость материала. Оценка аустенитного зерна и износостойкости.

    дипломная работа , добавлен 19.02.2011

    Что такое сталь. Классификация конструкционных сталей по химическому составу и качеству. Примеры маркировки стали. Схемы и способы разливки стали, их достоинства и недостатки. Основные способы обработки металлов давлением, особенности их применения.

    контрольная работа , добавлен 05.01.2010

    Изменение механических, физических и химических свойств углеродистых конструкционных и инструментальных сталей в результате химико–термической обработки. Марки сталей, их назначение и свойства. Структурные превращения при нагреве и охлаждении стали.







2024 © sdelano-krasnodar.ru.